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CRAS 2020 

Joining Efforts – Progressing Faster 

Robotic surgery is one of the most appealing fields of modern robotics. With over 3 decades of 

history, more than 3.800 systems installed worldwide and over 600.000 robot-assisted interventions 

conducted per year, the field of robotic surgery is well established. Despite these impressive figures 

and increasing popularity in research labs all over the world, the list of technological advances that 

made it into the operating room (OR) during this last decade remains limited. Long-awaited 

techniques such as augmented reality, 3D reconstruction, motion compensation, virtual guidance, 

haptic feedback, etc., are still under study in many labs all over the planet, progressing towards the 

market. CRAS strives to overcome this status-quo by strengthening the collaboration between the 

different research groups to boost the efficacy and shorten development cycles. 

CRAS 2020 is the 10th edition of this successful event. Formerly labeled as a workshop, from this 10th 

edition onwards CRAS has graduated and will continue to move forward as a “conference”. The 10th 

edition was planned to be held at IBEC / UPC in Barcelona, Spain. However, due to the worldwide 

COVID-19 pandemic, the organizers were forced to convert it to an online event. 
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Highlights 

Surgical robotics is a key factor for the introduction of new surgical procedures not feasible 
otherwise, as well as for improving current procedures by providing new assistive tools that allow 
achieving higher precision and improved surgical performances. Robotics breaks into the Operating 
Room in an effective way in the XXI century and its progress, although still slow, has already reached 
a figure of 10.000 operation robots in hospitals worldwide. This year’s edition, coinciding with the 
CRAS 10th anniversary, will evidence an explosion of new surgical robots and other devices in 
different specialties, which, until now, were produced by very few manufacturers. This market 
expansion will break with the otherwise slow progress and will favor reaching a wider range of 
clinical centers. 

 

In this 10th edition, communications included advances in the following fields: novel medical devices 
and robotic systems, surgical robot control, novel sensing technologies, vision-based modeling and 
control, development and validation of surgical training systems, and artificial intelligence for 
planning, guidance and autonomous operations. 
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Program 

 

Overall Program CRAS 2020 
 Monday - 28.09 Tuesday - 29.09 Wednesday - 30.09 
    
09.45 - 10.00 Opening Session   
10.00 - 11.00 Oral 1 Oral 3 Interactive 3 

11.00 - 12.00 Keynote - C. Huet Interactive 1 Interactive 4 

12.00 - 13.00    
13.00 - 14.00    
14.00 - 15.00 Keynote - D. Rus Keynote - A. Okamura  
15.00 - 16.00 Oral 2 Interactive 2  
16.00 - 17.00   Oral 4 
17.00 - 18.00   Keynote - B. Hannaford 
18.00 - 18.30   Awards & Closure 
 

For details on the CRAS 2020 conference program, please refer to CRAS website 

https://cras-eu.org/program/  

 

 

 

 

Open-Access License Information 

All articles included in these proceedings are published as open-access publication under the 
“Creative Commons Attribution 4.0 International” license.  

This means that the materials included here can be shared and adapted for any purpose. However, 
you must give appropriate credit, provide a link to the license, and indicate if changes were made. 
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you 
or your use. 

For more details on the “Creative Commons Attribution 4.0 International” license, please refer to: 
https://creativecommons.org/licenses/by/4.0/  

  

https://cras-eu.org/program#oral1_separator
https://cras-eu.org/program#oral3
https://cras-eu.org/program#interactive3
https://cras-eu.org/program#interactive1
https://cras-eu.org/program#interactive4
https://cras-eu.org/program#oral2
https://cras-eu.org/program#interactive2
https://cras-eu.org/program/
https://creativecommons.org/licenses/by/4.0/
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Keynote speech  Monday, September 28, 11:00 CET 

 

European Commission support to smart robots for healthcare: achievements 
and future perspective 

Dr. Cécile Huet 

European Commission  

 
The plenary lecture will cover a number of activities supported in the past, in particular through the 
Horizon 2020 funding programme, and will give some insights about the preparation of upcoming 
funding programmes, namely Horizon Europe (Research and innovation), and the digital Europe 
Programme (capacity building and deployment). It will also include some broader perspective on the 
relevant AI policy developments. 

 

Cécile Huet is Deputy Head of the Unit “Robotics and 
Artificial Intelligence” at the European Commission. This 
unit funds and assists beneficial robotics and AI 
developments within Europe. The unit is in charge of one of 
the world’s largest civilian programme in robotics with a 
budget of €700 million EU funding from Horizon 2020, 
supplemented by €2.1 billion from the European robotics 
industry in the context of the Robotics Public-Private 
Partnership. The unit is coordinating the preparation of the 
AI activities in the next funding programmes, Horizon 

Europe and Digital Europe programmes. Currently the unit is working with the stakeholders on the 
next Partnership on AI, data and Robotics, defining the strategic research, development, innovation 
and deployment for Europe in these fields. Moreover, this unit is at the heart of the Communication 
on Artificial Intelligence for Europe, the Coordinated Plan on Artificial Intelligence and the 
Communication on Building Trust in Human-Centric Artificial Intelligence. Cécile joined the unit since 
its creation in 2004. Previously, she worked for the industry in signal processing after a post-doc at 
the University of California Santa Barbara and a PhD at University of Nice Sophia Antipolis. In 2015, 
she has been selected as one of the “25 women in robotics you need to know about”. 

  

https://ec.europa.eu/digital-single-market/en/news/communication-artificial-intelligence-europe
https://ec.europa.eu/digital-single-market/en/news/communication-artificial-intelligence-europe
https://ec.europa.eu/digital-single-market/en/news/coordinated-plan-artificial-intelligence
https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines/1
http://robohub.org/25-women-in-robotics-you-need-to-know-about-2015/


 

8 
 

Keynote speech  Monday, September 28, 14:00 CET 

 

Robots, AI, Pandemics, and Surgery 

Prof. Daniela Rus 

Massachusetts Institute of Technology  

 
The COVID-19 pandemic has highlighted the role of AI and robotics in healthcare. There are 
tremendous opportunities to support the medical profession with intelligent tools to better diagnose, 
monitor, treat, and prevent disease. I will describe our recent work on robotic emergency ventilation 
systems for patients and UVC disinfecting robots, and discuss future opportunities for incision-free 
surgeries enabled by miniaturized robotic pills. 

   

Daniela Rus is the Andrew (1956) and Erna Viterbi Professor of 
Electrical Engineering and Computer Science; Director of the 
Computer Science and Artificial Intelligence Laboratory (CSAIL); 
and Deputy Dean of Research for Schwarzman College of 
Computing at MIT. Prof. Rus brings deep expertise in robotics, 
artificial intelligence, data science, and computation. She is a 
member of the National Academy of Engineering, a member of 
the American Academy of Arts and Sciences, and fellow of the 
Association for the Advancement of Artificial Intelligence, the 
Institute of Electrical and Electronics Engineer, and the 
Association for Computing Machinery. She is also a recipient of a 
MacArthur Fellowship, a National Science Foundation Career 
award, and an Alfred P. Sloan Foundation fellowship. Rus earned 
her PhD in computer science from Cornell University. 
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Keynote speech  Tuesday, September 29, 14:00 CET 

 

Advancing Human Sensorimotor Control for Surgery 

Prof. Allison M. Okamura  

Stanford University  

 
Robot-assisted surgery has a significant learning curve, because the human operators must adapt to 
kinematic mappings between human and robot, the dynamics of the manipulator and instruments, 
limited or altered sensory feedback, and learn the task itself. While performance metrics exist to 
certify users, it is generally unknown how to optimize training to speed up the learning and 
maximize the amount learned in skilled tasks. In this talk, I will demonstrate learning in novice and 
expert robot-assisted surgeons, discuss the mechanisms and roles of visual and haptic training, and 
propose methods for maximizing learning of complex instruments and tasks. Teleoperated robots 
enable visual and haptic perturbations, as well as detailed behavioral recordings, that facilitate the 
study of learning for a number of real-world skilled tasks not usually addressed in the neuroscience 
literature – ranging from surgery to driving a car. 

 

Allison M. Okamura received the BS degree from the University 
of California at Berkeley and the MS and PhD degrees from 
Stanford University, all in mechanical engineering. She is currently 
Professor in the mechanical engineering department at Stanford 
University, with a courtesy appointment in computer science. She 
is an IEEE Fellow and Editor-in-Chief of the journal IEEE Robotics 
and Automation Letters. Her awards include the 2020 IEEE 
Engineering in Medicine and Biology Society Technical 
Achievement Award, 2019 IEEE Robotics and Automation Society 
Distinguished Service Award, and 2016 Duca Family University 
Fellow in Undergraduate Education. Her academic interests 

include haptics, teleoperation, virtual environments and simulators, medical robotics, 
neuromechanics and rehabilitation, and soft robotics. She is passionate about engineering education 
and diversifying STEM. Outside academia, she enjoys spending time with her husband and two 
children, running, and playing ice hockey. For more information about her research, please see the 
Collaborative Haptics and Robotics in Medicine (CHARM) Laboratory website: 
http://charm.stanford.edu. 

 

 

  

http://charm.stanford.edu/
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Keynote speech  Wednesday, September 30, 17:00 CET 

 

Introducing Automation to Surgical Robotics: Challenges and Frontiers 

Prof. Blake Hannaford 

University of Washington 

 
With great success of teleoperated surgery in the medical profession, the research field is now 
working to demonstrate the utility of selectively introducing automated assistance for surgical 
robotics. Concepts from AI which readily translate into surgical robotics (though not necessarily in 
medical use) include computer vision, 3D shape recovery, augmented reality registration, and 
advances in control systems and networked teleoperation. Other concepts such as classical planners 
may not fit as well when a highly skilled human is still in the loop.  Highly elongated, narrow, and 
lightweight structures of robotic surgical instruments are fundamentally limited in accuracy and 
precision – limitations that can surprise the engineer since human controllers so readily adapt. This 
talk will review some results from the lab on the determinants of precise positioning of robotic 
surgical instruments, as well as some ideas on possible AI frameworks needed to advance patient 
outcomes through selective automation. 

 

Blake Hannaford, Ph.D., is Professor of Electrical Engineering, 
Adjunct Professor of Bioengineering, Mechanical Engineering, 
and Surgery at the University of Washington, in Seattle.  

Blake Hannaford received the B.S. degree in Engineering and 
Applied Science from Yale University in 1977, and the M.S. and 
Ph.D. degrees in Electrical Engineering from the University of 
California, Berkeley. From 1986 to 1989 he worked on the 
remote control of robot manipulators in the Man-Machine 
Systems Group in the Automated Systems Section of the NASA 
Jet Propulsion Laboratory, Caltech and supervised that group 
from 1988 to 1989. Since September 1989, he has been at the 
University of Washington in Seattle, where he is Professor of 
Electrical and Computer Engineering. He was awarded the 

National Science Foundation's Presidential Young Investigator Award, the Early Career Achievement 
Award from the IEEE Engineering in Medicine and Biology Society, and was named IEEE Fellow in 
2005.  He was at Google-X / Google Life Sciences / Verily from April 2014 to December 2015. His 
currently active interests include surgical robotics, surgical skill modeling, and haptic interfaces. 
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INTRODUCTION

Hysteroscopy has been rapidly evolving for the past
decade. Introducing office hysteroscopy, which allows
outpatient treatment in clinic, has brought gynecology to
yet another level [1]. Office hysteroscopy became avail-
able due to miniaturisation of instruments. Smaller in-
strument diameter makes it possible to pass through the
cervical canal without prior dilation, thus reducing recov-
ery time and mitigating risks related to the procedure as
no anaesthesia is involved.

At the same time, omitting prior dilation imposes
new challenges on the practitioner. The cervical canal is
a very narrow passage with rather high curvature. More-
over, the canal might be obliterated by adhesions, which
significantly impedes the process of introducing the in-
strument. Thus, a gynecologist has to pay great atten-
tion to avoid uterine perforation or a patient’s discom-
fort [2]. In order to become proficient, clinicians spend
many hours practicing this type of intervention. A wide
range of options is available for surgical training in hys-
teroscopy, including artificial platforms: physical simu-
lators, also known as box trainers, and virtual reality
(VR) simulators. VR training has a great number of
benefits compared to other types of surgical training [3].
It provides a great level of immersion and allows to ren-
der various scenarios and pathologies. Yet, to the best of
our knowledge, no research has been done in VR training
for hysteroscopic passage of the endocervix with in-office
setup.

The hypothesis of this study was that VR training
is capable of transferring the essential skills to overcome
the difficulties when passing through the cervical canal.
This extended abstract describes a VR surgical training
system for hysteroscopy that was developed specifically
for in-office hysteroscopy training and tested in the labo-

ratory setting. The proposed training system has a great
potential to fill the research gap and to be applied in clin-
ical practice.

MATERIALS AND METHODS

To prove the hypothesis, a prototype platform has been
designed. It features a simple navigation task, in which
participants should pass through the endocervix to reach
the uterine cavity.

The aim of the exercise was to enter the uterine
cavity and collect all checkpoints while maintaining the
level of applied force. Checkpoints are rendered as one-
millimeter green spheres, which are evenly distributed
along the surface of the cervical canal and the uterine
cavity. A user can collect spheres by touching them with
the tip of the hysteroscope: once a sphere is collected, it
disappears. When all spheres are collected, the exercise
is terminated.

Hardware setup: Figure 1 depicts the hardware
layout of the system. The user operates a mock-up hys-
teroscope pivoting in a silicone phantom of the vagina.
The Geomagic Touch haptic interface is attached to the
hysteroscope on the other end, reading the position of the
instrument and providing haptic feedback to the user.
A PC (Intel Core I7-9850H, NVIDIA Quadro T1000
w/4GB GDDR6, 8GB RAM) runs the simulation and
renders visual representation on a screen from the per-
spective of a virtual camera attached to the tip of the
hysteroscope.

Scene generation: The geometrical model of the
uterus is based on manual segmentation of the Visi-
ble Human cryosection dataset [4]. Mechanical proper-
ties were obtained from quasi in-vivo measurements per-
formed by Omari et al. [5]. The mechanical model of the
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uterus was represented by a finite-element tetrahedral
model with the resolution of 1310 elements.

Figure 1: VR simulation setup, (1) user interface, (2)
Geomagic Touch haptic device, (3) silicone phantom of the
vagina, (4) hysteroscope

Software architecture of the simulator includes
three main components: the physics engine, the visual
renderer and the haptic loop. All mentioned compo-
nents run in separate threads as all of them have dif-
ferent timing requirements. SOFA framework [6] is used
as the physics engine of the system. It runs at the up-
date rate of 150 frames per second (FPS). The Filament
renderer [7] is used for graphical representation. The
visual server runs at 50 FPS. Finally, the haptic loop
utilizes the OpenHaptics [8] libraries and runs at 1kHz.
Lagrange constraints generated by contact points in the
physical simulation are passed to the haptic loop to pro-
vide realistic feedback.

Experiments: Three expert hysteroscopists and five
novices with no prior experience participated in prelimi-
nary experiments to examine the proposed concept. As-
sessment of a subject’s performance was based on follow-
ing metrics: total execution time (te), trajectory length
(lt), effective jerk (mean jerk excluding idle states) (je),
effective force (mean force excluding idle states) (fe), cu-
mulative force (integrated force value) (fc), and force fast
Fourier transform (FFT) (fFFT ). The latter metric is the
cumulative sum of the real component of applied force in
the frequency domain.

To check statistical significance, the acquired dataset
was tested using Mann-Whitney U-test. A metric was
considered to be significant if its p-value was less than or
equal to 0.05.

RESULTS AND DISCUSSION

Table 1 represents the mean results of the experiment
in the expert and novice groups. p-values between the
groups are shown in the third column and denoted with
an asterisk symbol (∗) if a metric has statistical signifi-
cance (p ≤ 0.05).

Overall the platform demonstrated the ability to dis-
tinguish between novice and expert users. Execution

time was 55% higher for novice users. Trajectory length
difference was 46%. Cumulative force and force FFT
were 48% and 23% higher for novice users, respectively.

Summing up, the proposed concept demonstrated its
potential in training for in-office hysteroscopy. However,
more features, such as obliteration of the cervical canal
and surgical ripening of the cervix, still should be imple-
mented to improve its content and face validity.

Table 1: Results of the experiments

Metric Expert group Novice group p
te [s] 25.78± 1.14 40.12± 12.11 0.0501∗
lt [mm] 147.66± 3.84 215.86± 19.74 0.0167∗
je [m/s3] 2.88± 0.22 3.29± 0.62 0.3805
fe [mN ] 505.50± 10.01 498.52± 42.82 0.8878
fc [mN · s] 6.18± 0.64 9.17± 0.73 0.0173∗
fFFT 3313± 200.93 4079± 43.88 0.0173∗

REFERENCES

[1] A. Hernandez, “In-office hysteroscopy,” in Hys-
teroscopy, A. Tinelli, L. Alonso Pacheco, and S.
Haimovich, Eds. Cham: Springer International Pub-
lishing, 2018, pp. 33–40.

[2] P. Mcgurgan and P. Mcilwaine, “Complications of
hysteroscopy and how to avoid them,” eng, Best
Practice & Research Clinical Obstetrics & Gynae-
cology, vol. 29, no. 7, pp. 982–993, 2015, issn: 1521-
6934.

[3] M. M. Erian, G. R. Mclaren, and A.-M. Erian, “Ad-
vanced hysteroscopic surgery training.,” eng, JSLS
: Journal of the Society of Laparoendoscopic Sur-
geons, vol. 18, no. 4, 2014.

[4] M. Ackerman, “The visible human project,” Pro-
ceedings of the IEEE, vol. 86, no. 3, pp. 504–511,
1998.

[5] E. A. Omari, T. Varghese, M. A. Kliewer, J. Harter,
and E. M. Hartenbach, “Dynamic and quasi-static
mechanical testing for characterization of the vis-
coelastic properties of human uterine tissue,” Jour-
nal of Biomechanics, vol. 48, no. 10, pp. 1730–1736,
2015.

[6] F. Faure, C. Duriez, H. Delingette, J. Allard, B.
Gilles, S. Marchesseau, H. Talbot, H. Courtecuisse,
G. Bousquet, I. Peterlik, and S. Cotin, “Sofa:
A multi-model framework for interactive physical
simulation,” in Soft Tissue Biomechanical Model-
ing for Computer Assisted Surgery, ser. Studies in
Mechanobiology, Tissue Engineering and Biomate-
rials, vol. 11, Springer, 2012, pp. 283–321.

[7] Google, Filament rendering engine, Accessed: 2020-
05-10, 2020. [Online]. Available: https://github.
com/google/filament.

[8] 3DSystems, Geomagic openhatpics, Accessed: 2020-
05-10, 2020. [Online]. Available: https : / / www .
3dsystems.com/haptics-devices/openhaptics.

Proceedings of the 10th Conference on 

New Technologies for Computer/Robot Assisted Surgery (CRAS 2020)

15



Personalised Computer-Assisted Treatment of Knee Osteochondral
Lesions Enhanced with Augmented Reality. A Proof of Concept

F. Tatti1, H. Iqbal1, B. Jaramaz2, and F. Rodriguez y Baena 1

1Department of Mechanical Engineering, Imperial College London
2Smith & Nephew Inc.

{f.tatti,hisham.iqbal13,f.rodriguez}@imperial.ac.uk; branko.jaramaz@smith-nephew.com

INTRODUCTION

Over 100,000 knee arthroplasties are performed an-
nually in the United Kingdom, and the number is
on the rise [1]. Procedures targeting focal cartilage
lesions can avoid or postpone the need for a knee
replacement, but they are still relatively uncommon
[2]. One challenge presented by this class of proce-
dures is the difficulty in achieving a good congruence
between the implant’s shape and patient anatomy,
which is critical for success.
In this regard, Computer-Assisted Orthopaedic
Surgery (CAOS) could be of assistance, as it pro-
vides valuable metrics that can inform the selection
and placement of an implant and minimise the er-
ror between planning and execution. CAOS systems
promise to bring more quantitative data and objec-
tive metrics into the operating theatre, informing the
surgeons’ decisions, thus allowing them to tailor each
intervention to the patient’s needs [3].
While CAOS systems can collect and process a great
deal of information, how to best aggregate such infor-
mation and present it to the surgeon is also a critical
question. Currently, most CAOS systems rely on 2D
touch screens for user interaction, which pose sev-
eral problems, including the fact that surgeons have
to switch their focus between the patient and the
screen. Augmented reality is a promising alternative
for the future, as it allows to display key informa-
tion directly on site, avoiding the surgeon having to
divert their attention from the patient [4].
In this work we present a proof of concept for a
CAOS system, the aim of which is to achieve tar-
geted patient-specific treatment of focal cartilage le-
sions. The system uses intraoperative information on
the patient’s anatomy and lesion to select an optimal
implant and its pose. Augmented reality is used to
display the anatomical information and surgical plan
directly on or near the patient.

MATERIALS AND METHODS

In the context of a government funded industry-
academia partnership with a large orthopaedics
robot manufacturer (Smith & Nephew, inc), we cre-
ated a software module that generates a parametric
description of the shape and size of an osteochon-
dral defect (OCD), and used it to select an optimal
implant and pose. The software broadcasts case-

Fig. 1: Holographic view of the implant’s planned loca-
tion overlaid on a model of the patient’s femur.

specific data (i.e. implant pose and sizing) via UDP,
along with live tracking information of the patient
and surgical instruments, which in turn is utilised
when rendering holographic content on an external
augmented-reality headset.

The software module requires two inputs: a 3D
model of the patient’s femur and a vector of points
representative of the defect’s contour. The size
and elongation of the defect are captured by fit-
ting a 2D ellipse to its contour, while the anatomical
shape is described by fitting an elliptic or hyperbolic
paraboloid to the external surface. The 3D model
of the femur is assumed to be constructed by means
of a statistical shape model, therefore ignoring the
presence of a defect and reconstructing the “missing”
cartilage surface, as if the defect were not present.

The shape of the available implants is described us-
ing the same mathematical model employed for the
defect geometry. We can therefore select the best
implant for a given defect by comparing the defect’s
parametric description with that of the implants.
The implant’s best pose is then computed using the
ICP algorithm to co-register the implant’s and fe-
mur’s outer surfaces.

RESULTS

After implementing our prototype software in C++,
we combined these tools with the existing capabili-
ties of the NavioTMsurgical system (Smith & Nephew
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inc.), to create a complete surgical workflow. The
stages of the complete workflow are the following:
the surgeon is first tasked with collecting the posi-
tion of anatomical landmarks with a tracked probe.
These are used to register the position of the patient.
The anatomy of the bone is then modelled by using
the tracked probe to ’paint’ the surface of the ex-
posed femur. After this stage, the surgeon traces the
outer edge of the defect and the collected informa-
tion is then used to select the optimal implant and
its pose. Finally, the system generates a plan for the
bone that needs to be cut in order to correctly place
the implant and the surgeon executes it using the
system’s burring tool.

Throughout all stages of the workflow, the infor-
mation collected and generated is broadcast wire-
lessly to an augmented reality headset (HoloLens,
Microsoft, inc.) worn by the surgeon, using UDP.
We created custom HoloLens apps that retrieve the
information and generate holographic content. We
tested two modes of visualisation: one where the con-
tents of the NavioTMtouchscreen monitor are repli-
cated on a virtual floating window that the surgeon
can position freely in space, and another where in-
formation on the defect location, selected implant,
and pose is presented holographically on a 3D twin
model of the patient’s femur, as in Fig. 1. Promis-
ing preliminary data on surgeons’ interaction with
the holographic display was presented in [5] and in-
dicate that it is an acceptable means of interaction
for surgeons and that it does not disrupt the flow of
the procedure.

We also conducted preliminary testing of the work-
flow by simulating the presence of an osteochondral
defect on plastic femur models. The testing was suc-
cessful and demonstrated that the workflow can be
used to select and position an appropriate implant
for a given defect. Fig. 2 shows the successful plan-
ning and placement of an implant prototype.

DISCUSSION

The goal of this study was to create and test a proto-
type of a novel CAOS workflow that pushes current
system’s capabilities in two ways: first, by using in-
traoperative information to inform the selection of an
implant and its pose, and second by displaying this
information to the surgeon on or near the operating
site, by means of 3D holograms.

Our preliminary results are encouraging and suggest
that the automated selection method provides valid
information and that the augmented reality display
is a valid means for displaying it.

While our system is an initial proof of concept, we
believe it can be a first step in the direction of the
coming generation of CAOS systems, which will en-
able new levels of assisted patient-specific planning,
and use immersive technologies to make the interac-
tion between surgeon and machine more natural and
intuitive.

Fig. 2: Osteochondral defect repair workflow. Screen-
shot of the planning window (top) and final result (bot-
tom).
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INTRODUCTION 
Navigation guidance can mitigate the skill and 
experience requirements for percutaneous treatment of 
Chronic Total Occlusions (CTOs). Planning for an 
appropriate path for flexible catheters safely is one of the 
major challenges for endovascular catheterization. 
However, state of the art publications rarely consider 
kinematic constraints (e.g. curvature limitation). In our 
previous work, we proposed a fast path planning 
approach under curvature constraints, and the approach 
explores a path along the vascular centerline-based 
structure and locally optimizes the path to satisfy 
curvature constrains. Furthermore, we develop the path 
planning approach in this work, ensuring the continuity 
of curvature at coincident points between the vascular 
centerline and the locally optimized path. Particularly, 
the present work focuses on path planning under the 
framework of ATLAS project. 

MATERIALS AND METHODS 
- Datasets preprocessing 
The datasets are two-dimensional images with a pixel 
resolution of 2822 × 1539, presenting the lower limb 
arteries. They are obtained from five subjects via 
automatic stitching and convolutional neural network 
segmentation [1]. And then centerline-based information 
structure is extracted via medial axis skeletonization 
(Voronoi diagram) from the anatomical structure. It is 
feed to the further path planning simulation as an input 
and the simulation is carried out in the PyCharm platform 
on a computer with Ubuntu system. 
- Algorithm 
1) Planning under curvature constraints
We define that a path is composed of 𝑚𝑚 points, and each 
point 𝒑𝒑𝒊𝒊 is represented by (𝑥𝑥1, … 𝑥𝑥𝑛𝑛) that is the position 
representation in the 𝑛𝑛-dimensional Cartesian coordinate 
system. Curvature at 𝒑𝒑𝒊𝒊  is defined in Eq. (1). The 
curvature constraint is formulated as Eq. (2), where 𝑠𝑠∗ is 
the allowed maximal curvature value depending on robot 
capability. For example, 𝑠𝑠∗ ≈ 0.08 mm−1  of the 
designed steerable catheter prototype in [2]. 

𝑠𝑠𝑖𝑖 =
�∑ (𝑥̇𝑥𝑗𝑗𝑥̈𝑥𝑘𝑘 − 𝑥̇𝑥𝑘𝑘𝑥̈𝑥𝑗𝑗)2𝑛𝑛

𝑗𝑗≠𝑘𝑘

(∑ 𝑥̇𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 )3/2

(1) 

𝑠𝑠𝑖𝑖 ≤ 𝑠𝑠∗ for 𝑖𝑖 = 1, …𝑚𝑚 (2) 
In our previous work, we proposed a fast path planning 
approach under curvature constraints. Firstly, it explores  

a path along the vascular centerline-based structure from 
a user-defined start point to an end point via traditional 
graph-based path searching algorithm. Then it locally 
optimizes the path to satisfy curvature constraints via 
genetic algorithm, converting the curvature constraint to 
a component of the objective function. For example, 
there is one curve segment should be optimized due to 
exceeding the limitation in Figure 1, marked with green 
color. There may be several curve segments exceeding 
the limitation along the centerline. In that case, parallel 
optimization is carried on to reduce computational time. 
2) Smoothing at coincident points
In this work, we focus on connection smoothing to ensure 
the differentiability and continuity of curvature at the 
coincident points. The optimized curve segment cannot 
be mounted to the centerline directly (see Figure 1B), 
since the derivative (slope) 𝑝𝑝−  at the left side of the 
coincident point 𝒑𝒑 has a great difference value from the 
one 𝑝𝑝+ at the right side. In other words, it results in a 
great rotation angle 𝜃𝜃 in a short interval. It would exceed 
the robot kinematics and dynamics capability. Therefore, 
the differentiability should be respected.  
To obtain a desired degree of smoothness, the coincident 
point not only needs to be differentiable, but also belongs 
to the class of C1 and G2 functions. The C1 continuity is 
essential to ensure tangent vectors of the two connected  

Figure 1. Path planning results on lower limb arteries: (A) the 
full view (B) the zoom-in view of the result before connection 
smoothing (C) the zoom-in view of the result via G2 quintic 
Hermite curve smoothing. The initial and goal location are the 
black and purple points, respectively. Green line represents the 
curve along vascular centerlines. Red line shows the final 
solution after optimization. Blues depict the coincident points. 
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segments are equal. The G2 continuity [3] means the 1𝑠𝑠𝑠𝑠 
derivatives at the coincident points are collinear, and the 
curvature is continuous. The continuity of curvature is 
essential since it indicates non-sharp changes in bending 
extent of a catheter.  
In this study, G2 continuous quintic Hermite spline is 
proposed for connection smoothing. And it is compared 
with C1 continuous cubic Hermite spline. With the cubic 
Hermite spline, four parameters are needed: two control 
points and their related derivatives. To obviate loops, 
cusps or folds, an optimized geometric Hermite has been 
considered. It is defined by optimizing the magnitudes of 
the endpoint tangent vectors in the Hermite interpolation 
process so that the strain energy of the curve is a 
minimum. With the quintic Hermite spline, not only the 
continuity of first derivative is ensured, but also 
curvature gaps in the connections will be reduced. In this 
case, the values of second derivatives are also needed to 
calculate such a polynomial. 

RESULTS 
The proposed method is performed on the datasets, and 
the result is shown in Figure 1. It shows that G2 quintic 
Hermite curve method (𝑀𝑀2 , Figure 1C) generates a 
smoother connection at the coincident points than the 
planning without smoothing (𝑀𝑀0, Figure 1B). Compared 
with the C1 cubic method (𝑀𝑀1 ), 𝑀𝑀2  indicates a better 
performance in curvature continuity (see Figure 2). 
Moreover, the differentiability and curvature continuity 
are reported in Table I, and 40 trails for each set of 
(𝑠𝑠∗,𝑀𝑀𝑖𝑖) are performed. Two criteria are defined: 
difference of derivatives 𝑓𝑓𝑑𝑑 = |𝑝𝑝+ − 𝑝𝑝−|  between both 
sides of the coincident point; difference of curvatures 
𝑓𝑓𝑐𝑐 = |𝑠𝑠+ − 𝑠𝑠−|. By comparison, the differentiability and 
continuity of curvature is improved using the quintic 
Hermite interpolator. The reported values validate that a 
great improvement in the continuity of the curvature was 
obtained with the G2 quintic Hermite method, because its 
main strength is the control over the second derivative. 

CONCLUSION AND DISCUSSION 
In this work, a continuous-curvature path planning 
method is proposed for endovascular catheterization. The 
direct connection between two curve segments would 
lead to non-differentiability at the coincident setpoints. 
G2 continuous quintic Hermite splines are proposed to 
handle the connection problem to ensure differentiability 
and continuity of the curvature itself. In the future, some 
other factors will be considered for developing intra-
operative navigation: (i) the unpredictable environment 
deformation; and (ii) the uncertainties of model sensing 
(e.g. the tip position and vascular model). 
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Figure 2. Curvature of the planned path via method (A)-𝑀𝑀0 
(B)-𝑀𝑀1 (C)-𝑀𝑀2. Blues represent curvature of the curve along 
vascular centerlines. Reds are curvature of the optimized path. 
Greens depict curvature after connection smoothing. 

Table I. Performance comparison. The marks (*, 𝑝𝑝 < 0.05 
Kruskal-Wallis test) represent the statistical significance of 
(𝑀𝑀0,𝑀𝑀1), (𝑀𝑀1,𝑀𝑀2), (𝑀𝑀0,𝑀𝑀2), respectively. 

𝑠𝑠∗ 𝑀𝑀0 𝑀𝑀1 𝑀𝑀2 p 

0.40 𝑓𝑓𝑑𝑑 6.06±3.14 0.30±0.19 0.20±0.04 (***)

𝑓𝑓𝑐𝑐 0.356±0.238 0.041±0.008 0.016±0.005 (***)

0.46 𝑓𝑓𝑑𝑑 5.80±3.85 0.23±0.08 0.22±0.09 (* *)

𝑓𝑓𝑐𝑐 0.365±0.243 0.041±0.013 0.011±0.011 (***)

0.54 𝑓𝑓𝑑𝑑 5.25±3.28 0.23±0.09 0.20±0.08 (***)

𝑓𝑓𝑐𝑐 0.405±0.257 0.024±0.011 0.019±0.008 (***)
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INTRODUCTION 

 Minimally invasive surgery leads to high patient 

satisfaction, but puts an increased strain on the surgeon. 

Excessive loading of the patient’s abdominal wall can 

lead to complications such as trocar site hernia (TSH). 

Therefore, the development of force sensors leads to 

tools and feedback systems, aiding in complication 

prevention [1]. However, mechanical sensors have 

various practical limitations. Therefore the application of 

vision-based force sensing can enable more cost-

effective, intuitive and less invasive measurement 

systems [2]. 

Conventional visual force sensing techniques such as 

digital image correlation and visual-based finite element 

models are difficult to implement in the operating room: 

they are not flexible and often do not work real-time. 

Therefore a simplified model is suggested. In this 

Circular Deformation Model, a circular marking is 

applied on the abdominal tissues and its deformation 

modes are linked to tissue loading.  

MATERIALS AND METHODS 

(A) Physical setup 

The experimental setup consists out of a box with a 

circular opening in the top lid. A synthetic body wall 

(EcoFlex 00-50, thickness=20 mm ; Young’s modulus= 

82.7 kPa) was clamped inside the circular opening, 

modeling abdominal tissue. At the bottom of the box, a 

webcam (HP, 2300HD, resolution 1280×720 px) was 

fixated. The camera looked upon a circular silicon 

marking, adhered to the body wall (± 900 px/cm²). 

On the body wall, different loading tasks have been 

executed and the force was recorded with a sensor 

developed by De Smet et al. [3]. The tasks consisted of 

loading the body wall in all principal directions 

separately, in arbitrary in-plane directions and in three 

DoF directions. 

(B) Software for deformation tracking 

An iterative algorithm has been developed where in each 

frame contour deformations are modeled as ellipses, of 

which the features are stored for the entire duration of the 

measurement. The algorithm comprises four main parts: 

1) Calibration: Based on user input, parameters for

both a circular region of interest and an edge thresholding 

scheme are determined. 

2) Canny edge thresholding: Binary frames are

computed based on a Canny edge detection scheme with 

hysteris thresholding. 

3) Contour extraction and ellipse fitting: Region

growing algorithms extract contours from the image on 

which elliptical shapes are registered by means of a least-

squares approach. 

4) Cost assessment: Elliptical likelihood is assessed

with a cost function comprising internal cost (i.e. based 

on similarity with previous detections) and external cost 

(i.e. based on the elliptical attribute of constant 

cumulative contour point - focal points distance): 

𝐶𝑖𝑛𝑡 =  𝛼𝑐√(𝑥𝑐,𝑖 − 𝑥𝑐,𝑖−1)
2

+ (𝑦𝑐,𝑖 − 𝑦𝑐,𝑖−1)
2

+ 𝛼𝑅√(𝑅𝑖 − 𝑅𝑖−1)2 +

  𝛼𝑟√(𝑟𝑖 − 𝑟𝑖−1)²

Δ𝐹𝑘,𝑗 = √(𝐹𝑘𝑥 − 𝑥𝑗)² + (𝐹𝑘𝑦 − 𝑦𝑗)²

𝐶𝑒𝑥𝑡 =  𝛼𝑠ℎ𝑎𝑝𝑒

∑ |Δ𝐹1,𝑗 + Δ𝐹2,𝑗 − 𝑅𝑖|𝑛
𝑗=1

𝑛

With current frame 𝑖, elliptical center (𝑥𝑐 , 𝑦𝑐), extracted

contour points (𝑥𝑗 , 𝑦𝑗), long and short axis 𝑅 and 𝑟, focal

points 𝑭1 and 𝑭2 and weighting factors 𝛼.

(C) Signal alignment 

Force and visual signals from the two independent 

measuring units are aligned in time. This is achieved by 

resampling, low pass filtering, rough and detailed 

alignment. Rough alignment is based on manual input, 

detailed alignment corrects small mismatches based on 

correlation maximization. Global relations between 

aligned visual and force signals, as well as linear 

approximate ranges, were investigated using the 

coefficient of determination R². 

(D) Model validation 

Justification of elliptical shape approximation of 

deformed contours is investigated with two validating 

strategies: based on external cost in function of load 

amplitude; and based on power spectral density of higher 

harmonics in the discrete contour representation (where 

absolute elliptical shapes have one frequency per 

coordinate function). 

RESULTS 

(A) Model validation 

As comparative standards, the costs of a perfect ellipse, a 

two-ellipse-hybrid with a wide ellipse representing 

compression and a small ellipse for tension, and an 

intermediate shape, all of similar resolution as the camera 

feed, were calculated, which amounted to 0.279 px, 

12.281 px and 4.351 px respectively. Circular baseline 

contour cost lied around 1.15 px, a surplus attributed to 

shape imperfections. Cost rose with in-plane force 

amplitude, but not in a consistent relation. The increase 

was limited to a relative amount of maximal 25%-30%, 

with outliers up to >40%, but the absolute cost rarely 

surpassed 1.5 px. From a certain threshold on, cost 

maintained its increased level (Figure 1), but never 

reached costs indicating the alternate model outcomes. 
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Figure 1: Elliptical cost in function of in-plane loading 

A profound frequency analysis was prohibited because 

screen discretization resulted in an artefact where even 

perfect ellipses required higher harmonics for visually 

perfect reconstruction, making no standard available. 

(B) Force estimation 

Perpendicular force related linearly with radial 

increase/decrease (R²=0.95-0.97), with gradients ranging 

from 0.41-0.51 N/px and zero deformation offsets 

ranging from 0.31-0.66 N. Also, a second degree 

parabola fitted the data as well (R²=0.97-0.99). In-plane 

force related linearly with center displacement (R²=0.84-

0.96), with gradients ranging from 0.41-0.52N/px and 

zero deformation offsets ranging from 0.11-0.81N. 

Eccentricity (i.e. elliptical axes ratio) also showed peak 

to peak correspondence with in-plane loading, but the 

measure showed a higher sensitivity, where initial base 

shape deviations resulted in highly altered patterns and 

unintentional perpendicular loading gravely altered the 

eccentricity’s value. These relations were used for 

arbitrary force reconstruction (example Figure 2). 

Results encompassed the signal’s wave form, but were 

generally an overestimation. Linear regression did not 

give significant differences as compared to parabolic 

regression for the perpendicular force. In-plane forces 

were better reconstructed than three DoF forces since the 

radial parameter is also interdependent on in-plane 

loading. 

Figure 2: Example of a two DoF reconstruction 

(C) Non-linearities’ influence 

For high force amplitudes, the linear relation became 

more violated, pointing towards non-linear components 

influencing the relation. An iteration was performed 

where R² was calculated based on high force samples 

only, with a varying threshold. For the first in-plane 

direction, R² dropped from {0.94; -1.13} for Fthresh 

={7.5N; 7.6N}. Number of samples for coefficient 

calculation were {14; 12}. For the other in-plane 

direction, R² dropped from {0.89; 0.75; 0.19} for Fthresh = 

{8.7N; 8.8N; 8.9N}, with number of samples {54; 50; 

49}. The perpendicular direction showed no sudden drop 

in R² value, but rather a steady decline, where at 7.5N, R² 

had decreased to 78% of its original value, and at 8.7N it 

had further decreased to 67%. 

(D) Force classification 

Next to force estimation, force classification in high load 

/ low load classes is also considered. Gaussian 

discriminant models, Fisher discriminant models and 

support vector machines with various kernel functions 

have been trained with elliptical attributes and cost as 

features, and their diagnostic value is predicted with 

repeated random sequence 10-fold cross-validation. With 

an estimated sensitivity of 85-86% and specificity of 

>99%, support vector machines with 3rd degree and radial 

base kernel functions show the most potential. Moreover 

they are relatively invariant to the class threshold force. 

CONCLUSION AND DISCUSSION 

With the aim of practical force sensing during surgery, a 

pilot study to a vision-based force sensing technique is 

presented. Tissue deformation is modeled as elliptically 

shaped and elliptical attributes are related to loading. 

Linear relations can be deduced, but these are limited in 

valid range. Due to circumstances only a limited amount 

of measurements could have been executed. Lack of data 

could influence numerical significance. Moreover, these 

measurements were performed arbitrarily with different 

variance over the different tasks. Cross-talk (i.e. 

unintentional force components) occurred in single 

direction measurements, influencing the regression 

parameters. Hence, the repeatability of numerical results 

should be investigated. The circular marking on the body 

wall had a non-circular bias, making the fitted base shape 

elliptical instead of circular. This made the eccentricity 

relation more sensitive as different in-plane loading 

conditions could, depending on the orientation, both 

increase or decrease this parameter.  

Framerates up to 40 fps are achieved. These were, 

however, based on a smaller resolution (640×480 px) 

than the HD capacity of the camera. Segmentation 

strategies can be improved in robustness, to account for 

field of view ambiguities. Possibilities are histogram 

based techniques or a Hough transform combined with 

parallel computing, reducing computational time. 

Tissues are known to have hyper- and viscoelastic 

properties. More advanced reconstruction techniques, 

incorporating prior sample data, and soft-tissue models 

can be used to account for loading history dependence. 

Moreover, material parameters of the EcoFlex body wall 

are inherently different from the real abdomen 

(anisotropic, layered composition), implying possible 

different numerical results for real-life tissues. 

Introducing a more robust experimental setup for the 

acquirement of a larger dataset will be the first point of 

interest in a follow-up study. With this larger and more 

representative dataset, the compatibility with more 

elaborate soft-tissue models will be investigated. 
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INTRODUCTION 

Pneumothorax (PTX) is the presence of air in the pleural 

space. It causes a partial or complete lung collapse and 

can lead to major clinical complications. The incidence 

of PTX in the neonatal period is higher than in any other 

period of life and leads to death in 20% of cases. 

Radiological survey showed a PTX incidence of 1-2% in 

term neonates of which most are asymptomatic and only 

0.05-0.1% are symptomatic[1], [2].  

The PTX is an emergency condition; few minutes of 

delay in intervention can lead to patient’s death. Thus, it 

is advised to act immediately with the decompression 

procedure (DP) each time a PTX is suspected, even if it 

turns out that the suspect was wrong[3]. The emergency 

DP consists of positioning the infant supine and inserting 

a Butterfly 25G needle at the mid-clavicular line level in 

the 2nd or 3rd intercostal space (IS). The needle is inserted 

as close as possible to the lower rib to avoid any damage 

to the superior sensitive structures.  

Simulation is an effective educational technique for 

medical students and residents, and a very useful 

retraining tool for expert neonatologists, where relevant 

clinical contents are reproduced to promote the deliberate 

practice[4]. It aims to improve interventional techniques 

and comfort during clinical procedures and to maintain 

the skills over time without placing the patient at risk. 

Literature demonstrated the use of high-fidelity 

simulators is valuable for all those cases where the 

development of specific and fine motor skills is needed, 

as in the case of PTX. High-fidelity simulator allows the 

reproduction of the required operative gestures on 

advanced manikins avoiding the occurrence of dangerous 

movements, thus risks and side effects for the patients[5]. 

A valid teaching and retraining simulation tool for PTX 

should present the following features: i) allow the 

identification of the correct IS through the anatomical 

references; thus, it should present an accurate simulation 

of the anatomy both in terms of dimensions and 

mechanical properties; ii) reproduction of the tissue 

penetration feedback and the entire IS; perceive the lower 

rib is fundamental to learn where the needle should be 

inserted; iii) reproduction of the syringe plunger return 

feedback when PTX is solved; this is crucial to 

understand when the procedure has to be stopped; iv) 

tools providing feedback on the proper execution of DP. 

Commercial PTX simulators, dedicated research 

prototypes and patents are currently available. To the best 

of the authors knowledge the existing commercial 

solutions consist or in specific adult manikins or in 

neonatal simulators that provide a poor simulation of 

PTX. In addition, research prototypes reported in 

literature are almost low-fidelity simulators, and only one 

is for newborn[6], [7]. 

In this framework, the objective of this work is the 

development and assessment of a neonatal PTX 

simulator with expert neonatologists. The simulator 

validity was investigated as teaching and retraining tool 

by asking to the clinicians to perform on it an entire DP 

and evaluating the fidelity of the proposed simulator, 

both in terms of chest anatomy and PTX physiology.  

MATERIALS AND METHODS 

Simulate the PTX means reproducing the pleural space: 

an airtight chamber delimited by the lung, diaphragm, 

chest wall and mediastinum (figure 1A). All these 

structures were reproduced in the simulator through 

Additive and Formative Manufacturing Technologies 

and using materials that better simulate the mechanical 

properties of human tissues, as Ecoflex series silicones 

and TPU (Thermoplastic polyurethane). The simulator 

presents a compliant TPU neonatal ribcage incorporated 

into a silicone chest wall, two lungs, a heart, a 

mediastinum and two dedicated areas for the needle 

insertion in the 3rd ISs (figure 1B). A simulated 

diaphragm was realized and glued to close the left and 

right pleural space at the manikin bottom and to connect 

them to the simulator hardware. Head, arms and a cover 

skin were then added to make the training procedure as 

realistic as possible (figure 1C).  

Figure. 1. (A) Chest anatomy. (B) Simulator internal structures. 

(C) Complete simulator. 

The simulator actively generates the tension inside the 

two pleural spaces through two air pumps, and it 

parametrically controls the internal pressure by means of 

two pressure sensors and the Arduino Uno 

microcontroller. Simulator management software and a 

user-friendly graphical-user interface (GUI) were 

implemented by using LabView software (figure 2). GUI 

permits to control the pressures inside the pleural space 

with both graphical and numerical outputs and it allows 

to activate the two air pumps for simulate the presence of 

air in the pleural space.  

System validation process involved 10 expert 

neonatologists with, in average, 10 years of experience in 

A C B

0
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a 3B level Neonatal Intensive Care Units (NICU), and 

with previous experiences in simulation – they performed 

at least one DP on the simulator. 

Figure. 2. Simulator interface. The left panel controls the right 

pleural space and the right panel controls the left one. 

During the PTX DP, the physician uses a 10ml traditional 

syringe equipped with a three-ways valve connected to a 

thin and long tube whose end part consists of a Butterfly 

25G needle. The syringe is filled with 2 ml of saline 

solution to easily visualize the air aspiration (figure3). 

Two surveys were submitted to the doctors before and 

after the DP. The pre-procedure survey aimed to quantify 

the physicians’ previous experience and their general 

opinion about simulation. In the post-procedure survey, 

it was asked to evaluate the simulator features and its 

usefulness in teaching and periodical retraining courses. 

During each performed DP, a pleural pressure of 0mmHg 

was set and the pressure-time graph was showed to the 

physician for all the time. 

Figure. 3. Neonatologist performing the DP on simulator. 

RESULTS 

The proposed simulator presents all the features 

previously listed as required to be considered a valid 

teaching and retraining tool. 

The physicians involved in the validation session belong 

to an homogeneous population: they have performed, in 

average, from 5 to 10 DPs during their career, 0 to 2 times 

during the last year and the last time they solve a PTX 

was less than six months ago. 

In table 1 are reported the average scores of the main 

questions of pre- and post-procedure surveys. In brackets 

there are the scales of evaluation: (1-10) where a score 1 

means a totally negative judgement or a question subject 

different from reality and 10 means a totally positive 

judgement or extreme fidelity of the question subject; 

(1<5<10) where 5 indicates an equal stiffness, scores >5 

for stiffer tissues and scores <5 for softer tissues. 

Table. 1. Surveys main questions and average scores. 

CONCLUSION AND DISCUSSION 

PTX DP were simulated. An initial difficulty was 

observed in using the three-way valve, which highlighted 

the need of clear and real-time feedback on the procedure 

execution. This feedback is provided by the proposed 

simulator through the interface and more in detail with 

the pressure plots. Moreover, the simulator was 

recognized as an immersive training system allowing a 

complete skills development by the residents and 

becoming a valuable retraining tool for experienced 

physicians; every single phase of the DP can be trained 

and mastered with the simulator, unlike current 

commercial solutions. In fact, the latter do not present the 

fundamental feedback to understand the correct course of 

the procedure and its end, leading to a partial learning. 

Consequently, the learning gaps will only be filled when 

the DP is performed on the first patients, exposing them 

to avoidable and therefore unjustifiable risks. 

In the future, for a more complete validation of the 

system, a specific experimental protocol involving 

residents will be carried out and a deep comparison of 

obtained results with the results from other commercial 

simulators could be also interesting. 
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Pre-procedure survey Score 

Do you consider the simulation useful in 

clinical practice? (1-10) 

9.5 

Do you consider the simulation useful in 

teaching? (1-10) 

9.6 

Do you consider the simulation useful in 

periodical retraining? (1-10) 

9.1 

Post-procedure survey 

What is your overall assessment of the 

simulator? (1-10) 

9.1 

Is the simulator anatomy accurate? (1-10) 8.5 

Is the ribcage stiffer, softer, or equal to 

reality (1<5<10) 

6.1 

Are the soft tissues stiffer, softer, or equal to 

reality (1<5<10) 

5.7 

Is the needle penetration feedback equal to 

reality (1-10) 

7.5 

Is the PTX volume equal to reality? (1-10) 8 

Do you consider the high-fidelity simulation 

useful in teaching and retraining? (1-10) 

9.5 

Which is your overall judgment of the 

proposed simulator compared to tested 

commercial simulators? (1-10) 

9.2 
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INTRODUCTION 

Modern pediatric neurosurgery started with the work of 

Ingraham in around 1929 [1], which later led to the first 

textbook on pediatric neurosurgery published in 1954. 

Robotic surgery has seen its dawn almost twenty-five 

years ago, and the first reported surgical procedure was a 

neurological biopsy. This procedure removed the 

hesitation for using robots in ORs and the world has seen 

remarkable advances in surgical robotics ever since. 

Neuromate was the first commercial neurosurgical robot, 

introduced in 1987. Now, commercial robotic systems 

can perform a wide range of the minimal invasive 

neurosurgical procedures such as stereo 

electroencephalography (SEEG), deep brain stimulation 

(DBS), targeted radiotherapy, and endoscopic third 

ventriculostomy (ETV). However, despite all the 

progress in this area, the literature on robotic 

neurosurgery in neo-natal and infants is nowhere to be 

found [2]. 

To this day, there are several solutions to carry out 

robotic neurosurgical procedures such as Medtech’s 

ROSA®, Renishaw’s Neuromate®, and iSYS’s iSYS1. 

All of these systems are designed for adults. To the best 

of our knowledge, pediatric robotic neurosurgery using 

these systems has never been reported. 

In the United States, there are 70,000 surgeries for 

treating hydrocephalus annually. 4 out of 1000 children 

are born with hydrocephalus [3], with estimated 

treatment costs amounting to nearly 2.0 billion US 

dollars. Surgeons perform these procedures manually, 

which is extremely difficult and risky for the babies. 

Therefore, there’s a vast need for pediatric neurosurgical 

robots. 

To understand why currently robots are not appropriate 

for infants, we should first understand the anatomy of the 

newly born baby skull: It is not fully developed 

(calcified), so it is soft. This means that the head fixation 

methods required by current neurosurgical robots (e.g. 

stereotactic frames) cannot be used in babies, as they can 

cause complications. Also, the large size of current 

neurosurgical robots is another significant issue, as they 

tend to significantly disrupt the regular workflow of the 

OR. This is critical pediatric neurosurgery as the 

workspace around the baby is very small, requiring the 

close presence of at least 3 clinicians, as shown in Fig. 1. 

Consequently, a new type of robot that can integrate 

seamlessly to the OR, causing minimal disruption and 

providing the required precision and workspace, is 

needed for pediatric neurosurgeries. Here, we present the 

engineering requirements for one such system and 

propose a novel design to achieve them.  

Fig. 1: Typical scenario of state-of-the-art pediatric 

neuroendoscopy. 

REQUIREMENTS 

The engineering requirements for a new pediatric 

neurosurgical robot was defined by observing real 

surgeries and the environment of the operating room. In 

addition, the MRI of a newborn head was obtained and 

converted to a CAD model, as shown in Fig 2 (a). It was 

observed that the surgeries use one fixed entry point into 

the skull, through which a rigid surgical endoscopic 

sleeve is inserted (later on an endoscopic camera with 

surgical tools are inserted). The orientation of the 

endoscope is established before entry, based on a pre-

operative plan and using intraoperative electromagnetic 

navigation. The references are Anterior-Posterior and 

Lateral-Medial angles. The endoscope is inserted by a 

very slow translation motion, which is constantly tracked 

using the navigation system. When the treatment area is 

reached, the endoscope is locked in place and the surgeon 

operates through the endoscope working channels. 

In this work, the focus is on designing a new robot to 

enable precise and delicate insertion of the endoscope. It 

should also provide rigid and stable support for the 

subsequent manual surgical actions. The total size of the 

robotic system is also a key parameter. So the maximum 

size of the robot should be proportional to the surgical 

table, which is mentioned in Table.1. Therefore, from the 

description above it is clear that at least 3 DOFs are 

required to enable two rotations and one translation. 

Besides, the entry point configuration requires 3 more 

DOFs to place it precisely on the skull. Based on the MRI 

profile and the motions around it as shown in Fig 2(b), 
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two circular and a translation motion are required for the 

intervention. The robotic system should allow -55° to 55° 

in AP, -60° to 60° in LM and at least 130 mm of depth 

motion.  

Finally, another major requirement is to avoid 

interference with the neuro-navigation system. 

DESIGN OF THE ROBOTIC SYSTEM 

Minimally invasive surgical robots typically required a 

Remote Center of Motion (RCM), which should be at the 

incision point to avoid damaging tissue around it. Here, 

we decided to use 3 DoFs to position a RCM point at the 

incision location, and another 3 DoFs to adjust the 

orientation and insertion of the surgical endoscope. 

The RCM positioning is implemented with linear 

movements along the lateral and normal directions to the 

surgical bed (Mx, My, and Mz on Fig. 3). The robotic 

system is designed to be mounted on the bed to minimize 

interference to the surgical workflow. It will be 

fabricated with non-magnetic material to avoid 

interfering with the intraoperative neuronavigation 

system. To help on this, we proposed a design that places 

most of the robot components under the operating table. 

The robot design resembles a Leksell frame, which can 

be easily integrated to the neurosurgery environment.  It 

features a circular rail guide of 150 mm in diameter. An 

endoscope insertion mechanism is mounted on the rail of 

the circular guide. In order to provide rigid support, the 

circular guide rail is supported from both ends.  

A fully decoupled mechanism design was selected to 

facilitate system control and the achievement of high 

precision and accuracy in positioning the robot end-

effector. To achieve this, a slide-in frame system was 

designed as shown in Figure 3. The inner frame supports 

the circular guide rail. This frame slides in an outer U-

Shape frame, enabling motion in Mz. Motion along My is 

enabled using two linear guides, which are used to keep 

the motion of the inner frame intact. In the same manner, 

both of these frames move in the direction of Mx. This 

mechanism ensures three DOFs remain uncoupled. 

The other three DOFs, i.e Anterio-Posterior, Lateral-

Medial, and depth, are also shown in Figure 2 (a), above 

the bed. The RCM of the robotic arm is achieved 

mechanically by using the isocenter of the circular guide 

rail and its actuator.  

Fig. 3: Electro-Mechanical design of the robotic system. 

RESULTS AND DISCUSSION 

A novel robotic platform has been designed and is under 

manufacturing based on a close collaboration with 

neurosurgeons. The overall volume occupied by the 

system is 1016 x 612 x 167 mm3, but most of it is 

positioned under the operating bed. The mechanism 

above the operating table occupies a volume of only 380 

x 612 x 167 mm3. An initial proof-of-concept prototype 

was developed using stereolithography. The prototype 

allowed physical verification of the system with a 

pediatric neurosurgeon. After verifying the achieved 

workspace,  as shown in Figure 2(a), surgeons confirmed 

the suitability of this design, mentioning it will likely be 

useful also for transnasal and trans mucus interventions. 

This robot was primarily designed for Endoscopic Third 

Ventriculostomy (ETV), but other potential indications 

can include Ventricular shunt, Biopsy and Deep Brain 

Stimulation (DBS). Next steps include the completion of 

the system fabrication, the design and implementation of 

its control system, and the execution of a series of testing 

and validation experiments. 
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Fig. 2: (a) Required kinematic workspace (b) Real MRI of a 

baby’s head converted to a CAD model. 

Table 1: Design Parameters 

Required Parameter Value 

Max. Robot Size 1000x1000x600 mm 

Motions 

AP= -55° to 55° 

LM= -60° to 60° 

Depth = 130 mm 

ΔX>150mm, ΔY>70mm, 

ΔZ >100mm 

Precision 100 microns 
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I. INTRODUCTION

Accuracy and precision are of uttermost importance
in many robotic applications, especially in minimally
invasive surgery, where little (or preferably no) damage
should be produced to the patient’s body. In order to
be able to perform surgeries, robots need to be safe,
precise, and capable of adapting to different situations.
However, modelling the kinematics of surgical robots
may be very challenging. Machine learning and data-
driven approaches have been having a huge impact on
robot modelling, since analytical models may be hard to
obtain due to the complexity of the systems [1]. In fields
like robotic surgery the robot model need to be able to
quickly adapt to the changing environment. As a matter
of fact, significant modeling errors can occur during
operation due to both neglected mechanical phenomena
(e.g., nonlinear elasticity, wear or break of tendons) and
perturbations, such as tool insertion and removal [2] or
fluids (like blood) in the system that change the friction
parameters. Traditional robot open-loop and closed-loop
control techniques, which depend on an accurate models
may not promise system stability or optimal control for
the system. Therefore, an adaptive control strategy might
be needed [3].

Another important aspect to consider in robotic
surgery is the presence of a Remote Center of Motion
(RCM). In order to guarantee RCM motion, serial-link
manipulators can be used in conjunction with surgical
tools to increase the number of Degrees of Freedom
(DOFs) of the whole system [4]. Then, the RCM
motion is guaranteed by properly controlling the whole
system. Nevertheless, these control based techniques
require the kinematic model of the system, both of the
serial-link manipulator and the surgical tool.

In this work we present an approach to effectively
model a surgical robotic system and use the learned
model, alongside the model of a known serial-link
manipulator, to perform surgical tasks autonomously.
Feedforward Artificial Neural Networks (ANN) are used
to first build the forward kinematic model of the surgi-
cal robot offline. To deal with possible unpredictable
changes in the model and not sufficient generalizabilty
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Fig. 1: The micro-IGES and the simulated environment.

of the ANN, an online adaptive strategy is also included.
ANN have been chosen thanks to their ability to model
complex functions and because their parametric nature
allows to easily and analytically compute the network
derivatives, which are needed for solving the inverse
kinematics of the robot and for updating the model. The
proposed method is shown in a simulation environment
based on VREP simulator [5] for a tumor resection task
(Figure 1).

II. METHOD

A. Micro-IGES Surgical Robotic Tool

The Micro-IGES [6] (Figure 1) is a surgical robotic
tool, composed of a rigid shaft and a flexible section.
In total it has 5 DOFs, plus the gripping. Each joint
of the articulated part is driven by an antagonistic
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pair of tendons, with each pair being connected to the
corresponding driving capstan at the proximal drive unit.
In this work, the motor to joint mapping is the same as
in [7].

B. Motion Control

In order to optimally exploit the hyper redundancy
of the system, the Hierarchical Quadratic Programming
framework (HQP) [8] is employed, which permits to
specify motion tasks with different priorities: keeping
the RCM fixed is the higher piority task; follow a desired
path (in order to remove the tumor) is the secondary task.
The control problem is then formulated as:

q̇n = argmin
q̇

1
2
|| ˙̃hn−Jh,nq̇||2

s.t Jh,n−1q̇ = Jh,n−1q̇n−1
qm−q

dt
≤q̇≤ qM−q

dt

, (1)

where q, q̇ ∈ R12 are the robot commands,
Jh,n =

[
JKuka JuIges

]
the total robot Jacobian

expressed in the base frame, n = 1 corresponds to the
task of guaranteeing RCM (Jh,1 = JRCM) motion and
n = 2 is for the path tracking (Jh,2 = Jtot). For the
primary RCM motion task, Jh,0 = 0 and only joint
limits are considered.

C. Robot Modelling

The forward kinematic model of the Micro-IGES is
first leaned offline, commanding the robot to follow a
circular path, like the shape of the tumor to resect. ANN
are employed for this purpose, mapping the motor values
θ ∈R5 to the 3D Cartesian tip position. The parametric
nature of the ANN allows to analytically and easily
compute the micro-IGES Cartesian Jacobian JuIges. To
address the problem of possible unpredicted model in-
accuracies, the neural network model is adapted online
whenever the error between the expected tip position and
the measured one (in a real scenario via electromagnetic
trackers or vision) is larger than a certain threshold.

III. RESULTS

To show the capabilities of the proposed adaptive
modelling strategy and of the HQP control, the robot
was required to follow a circular path, simulating a
tumor resection, while guaranteeing the RCM motion.
To simulate unpredicted model changes the Elbow 1
and Elbow 2 are assumed to be locked at 10◦ and 20◦

respectively. The proposed approach, however, does not
have any knowledge about the changes in the model,
but it only requires the measurement of the tip position
for the adaptation. Results in Figure 2 show that the
proposed approach is capable of relearning a good model
and accurately perform the tracking task. The initial
positioning error is due to the unmodelled locked joints.
During the whole motion, the model was adapted 79
times. The mean absolute errors between the expected
ANN output and the actual tip position along the x,y,z
directions result to be

[
0.19 0.28 0.31

]
mm, whereas
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Fig. 2: Cartesian tip position for the path tracking
simulating the tumor resection.

the mean absolute errors between the desired and the
actual tip position are

[
0.05 0.06 0.01

]
mm. With

regards to the RCM, the mean absolute tracking errors
are

[
0.51 0.34

]
·10−3mm along y,z in the RCM frame

(Figure 1c).

IV. CONCLUSIONS

The proposed adaptive modelling approach resulted
effective in relearning an accurate model of the robot,
also in the case of unpredicted model changes. The
control strategy proved capable of precisely perform
the given motion tasks. Future work will focus on
implementing the proposed approach on the real system,
where the nonlinearities due to the tendon transmission
make the modelling very challenging.
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INTRODUCTION 

The cervix, which corresponds to the lower portion of the 

uterus, undergoes a structural transformation called 

cervical remodelling during labour. It is a continuous 

process that can be divided into four different phases: 

softening (corresponding to the softening of the cervical 

tissues), effacement (which is the gradual shortening of 

the cervix and it is usually evaluated in percentage from 

0 to 100%), dilation (which coincides to the gradual 

opening of the cervix to accommodate the passage of the 

foetus head into the vagina and it is measured in 

centimetres from 0 to 10 cm) and postpartum repair (that 

is the recovery of tissue integrity). Cervix evaluation, in 

particular of its length, dilation and softness, is the only 

available intrapartum tool used by the medical doctors to 

manage delivery, and to take operative decisions, such as 

oxytocin use or caesarean delivery. Currently, the 

cervical assessment is still performed by a manual 

vaginal exploration during which the consistency, 

effacement and dilation are assessed only using index and 

medium fingers. This evaluation is therefore strongly 

subjective, thus reliability is very limited. Data 

reproducibility is the most important limit of the current 

methodology for delivery progress evaluation, also 

because several clinicians usually take part in the 

management of a single labour. Moreover, being manual 

capabilities strongly associated with experience, 

residents have to spend many hours in the delivery room 

for correctly learning how to make an accurate evaluation 

of the cervix, being no available alternatives in terms of 

training processes. To overcome this drawback, 

simulation plays a fundamental role in medical training. 

However, commercial simulators available on the market 

(www.3bscientific.it, www.birthinternational.com) and 

prototypes reported in literature [1][2][3] are passive, 

static, low-fidelity and technically limited devices.  

In this context, this work stemmed from the idea to 

design, develop and validate a High-Fidelity simulator 

for reproducing the changes that occur in the cervix 

during labour (i.e. softening, effacement and dilation). 

The device, developed with the collaboration of expert 

gynaecologists of the Azienda Ospedaliero Universitaria 

Pisana (AOUP), can be dynamic, modular, intuitive, easy 

to control, low cost and transportable.  

MATERIALS AND METHODS 

The whole structure of the device (Figure. 1) is be divided 

into three main sub-systems - each reproducing one of the 

changes that occur in the cervix, i.e. softening, 

effacement and dilation - assembled together in a support 

structure. During delivery, these phenomena occur in a 

sequential way: first the cervix becomes soft, then the 

effacement occurs and, finally, dilation takes place. The 

same sequence of changes is reproduced in the system. 

Figure. 1. Rendering of the structure and its sub-systems. 

A. Softening sub-system 

The softening of the cervix is simulated by using granular 

jamming, a physical mechanism that allows to change a 

structure stiffness (central element in Figure 1). Key 

elements of granular jamming are: the membrane, the 

internal particles and the vacuum system. The membrane 

was realized through a moulding process with Ecoflex 

0030 by Smooth-On (Smooth-On Inc., USA). The 

silicone membrane was filled with coffee powder, 

following the literature evidence [4], and a small flexible 

tube (2 mm in diameter), integrated into the coffee 

powder, was connected to an air pump motor for 

modulating the vacuum level. To control the softening 

process, the air pump was connected, through a Mosfet 

transistor, with Arduino MEGA 2560 microcontroller 

(Arduino AG, Italy). In order to assemble the softening 

module with the rest of the simulator, a 3 mm thick 

circular crown ($ in Figure 1) was developed: it has a 

central hole for housing the body of the silicone structure 

and four bars equipped with four permanent magnets (x 

in Figure 1) used for attaching and detaching the 

softening sub-structure from the whole simulator.  

B. Effacement sub-system 

Four independent structures (# in Figure 1) were realized 

for simulating the cervix effacement process. Human 

cervix shows a circular shape, however, the choice 

behind the idea to use four independent structures is for 

reducing the design complexity of the simulator while 

guaranteeing the ability to simulate both physiological 

and pathological shortening of cervix as for childbirth. 

The fundamental element of each single structure is a 

Nitinol (NiTi) Shape Memory Alloy (SMA) spring which 

allows for the realization of a sub-system that changes its 

length from 4 to 1 cm in a simple and quite fast way. The 

best trade-off between the anatomical cervical reduction 

that reaches 1 cm length starting from 4 cm, actuator 

force and activation current, led to using 1 mm diameter 
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NiTi wire for developing a torsion spring 8 mm in mean 

diameter featured by 4 active spring turns. Two 

commercial power supplies were included in the system, 

for powering the four SMA actuators. Experimental 

evidences showed that with a voltage of about 1.3 V and 

a current of about 3 A, the spring, once manually 

deformed for reaching the starting length of 4 cm, could 

return to its fabrication dimension in 0.5 seconds. 

However, because SMA actuators were not able to 

maintain a regular shape if repeatedly solicited, each 

NiTi spring was concentrically included into a preformed 

Polyethylene (PET) 5 mm in diameter sheath (# in Figure 

1). In order to join the NiTi spring and the sheath and then 

close the two ends of the structure, two rapid prototyped 

bases equipped with two small gold rings permanently 

fixed into two holes, were fabricated. After connecting 

the spring to the rings, the two bases were glued to the 

ends of the sheath. The entire structure was then covered 

with Ecoflex 00-10 silicone to reproduce the same feeling 

of physiological tissue. The SMA actuators were 

controlled by an Arduino MEGA 2560 microcontroller 

together with an electronic circuit containing a relay 

module as the power supplies cannot be directly 

connected to the Arduino as they generate too high 

current.  

C. Dilation sub-system 

Four linear actuators (* in Figure. 1) are used to simulate 

the cervix dilation. Four L12-50-100-12-P Micro Linear 

Actuators made by Actuonix Motion Devices (Actuonix 

Motion Device Inc., Canada) were selected, as they are 

small in size and show an intuitive control. In addition, 

each motor has 5 cm of stroke, so by fixing them at 90° 

each other, the 10 cm cervix dilation, required to 

accommodate the passage of the baby head into the 

vagina, was obtained. In order to join the dilation sub-

system with the effacement one, a Silicone Ecoflex 00-

50 membrane 2 mm thick was obtained by moulding 

technique. The effacement sub-system was manually 

inserted into this membrane and fixed to the mobile end 

of the motor exploiting a dedicated 3D printed mock-up 

already screwed to the motor. Lastly, between one sub-

system and the other, a preformed PET sheath, covered 

with Ecoflex 00-10 silicone and suitably fixed to the 

entire system, was added so that the circular shape 

(typical of the human cervix) remained with the variation 

of the dilation.  

RESULTS 

The single components described in the previous 

paragraphs were assembled to reproduce the human 

cervix anatomy and physiology. In particular, the linear 

actuators with the effacement sub-system were fixed to a 

PMMA circular crown, fabricated by using the Laser 

Cutter machine (Universal Laser Systems Inc., USA), so 

that in the rest position (stroke of each motor equal to 

zero) the cervix dilation is 10 cm, and when the stroke of 

the motors is maximum (5 cm for each motor) a closed 

cervix is simulated. The softening sub-system was 

assembled with the rest of the structure thanks to four 

magnets included in both sub-systems. In order to easily 

transport the simulator, all the electronic components 

were inserted inside a PMMA box made again by laser 

cutting. The overall assembly of the simulator is shown 

in Figure 2. To control the entire system, an intuitive user 

interface (GUI) was created with LabVIEW 2019 

(National Instruments, USA). The GUI was made up of 

three blocks for easily managing the three sub-systems 

(Figure 3) thus for guaranteeing the sequential behaviour 

of the human cervix: softening, then effacement and, at 

the end, dilation, as it happens in nulliparous mother 

during labour. In order to validate the proposed system a 

preliminary assessment phase was carried out involving 

four ten-year experience gynaecologists. Medical doctors 

confirmed the effectiveness of the proposed device, both 

in terms of used materials and technologies. 

Figure. 2. Assembly of the simulator. 

Figure. 3. The User Interface. 

CONCLUSION AND DISCUSSION 

Analysing the state of the art of both commercial 

simulators and prototypes, it emerges that currently there 

are no systems that faithfully reproduce actively and 

dynamically the changes of the cervix during the labour. 

This work has the aim of creating a system capable of 

covering this gap, using different technologies and 

principles, such as granular jamming, SMA, 3D printing, 

laser cutting and linear actuators. The realized simulator 

paves the way for more innovative and technological 

training and teaching programs in gynaecology and 

obstetrics. Future efforts will be dedicated to carry out a 

well-structured validation protocol involving both 

resident and expert gynaecologists.  

REFERENCES 

[1] York et al., "Creation and Initial Assessment of a Second 

Trimester Uterine Model" Simul. Healthc.; 2014.  

[2]  K. L. Shea et al., "Vaginal Examination Simulation Using 

Citrus Fruit to Simulate Cervical Dilation and Effacement" 

Cureus; 2015. 

[3] M. J. Luk et al., "A dynamic Cervix Phantom Robot for 

Latent Labor Simulation" Soft Robot.; 2018 

[4] A. Cavallo et al., "A Soft Retraction System for Surgery 

Based on Ferromagnetic Materials and Granular 

Jamming" Soft Robot., 2019.  

Proceedings of the 10th Conference on 

New Technologies for Computer/Robot Assisted Surgery (CRAS 2020)

29



5G Telesurgery – Feasibility Experiment and First Public Demo

Leonardo S. Mattos, Alperen Acemoglu, and Darwin G. Caldwell
Biomedical Robotics Lab, Advanced Robotics Dept., Istituto Italiano di Tecnologia

{leonardo.demattos,alperen.acemoglu,darwin.caldwell}@iit.it

INTRODUCTION

The remote surgery idea has been around for over
30 years [1]. This dream was finally achieved in
2001 with the Operation Lindbergh, the first transat-
lantic surgical intervention performed on a human
[2]. However, this feat proved hard to replicate, es-
pecially due to high costs and the limited availabil-
ity of both surgical robots and appropriate telecom-
munication links. This scenario is quickly changing
with technological progress and the popularization of
robotic surgery. Now, the new 5G mobile telecom-
munication standard promises to satisfy all require-
ments for telesurgery applications.

Here, we present an initial positive verification of
this possibility based on an experimental 5G net-
work and an experimental surgical robot: IIT’s laser
microsurgery system was adapted for remote opera-
tion and ROS (robot operating system) was used as
the middleware, connecting a surgeon to the remote
surgical robot over Vodafone’s 5G network in Milan
(Italy). This setup was then used for feasibility tests
on a human cadaver and presented live during the
first public demonstration of 5G telesurgery.

MATERIALS AND METHODS

The complete surgical robotic system used in this
telesurgery experiment is presented in Fig. 1. This
setup was developed based on IIT’s robot-assisted
laser microsurgery technologies, created in collabo-
ration with ENT surgeons from the University of
Genova to address current limits in transoral laser
microsurgery (TLM). TLM is a particularly challeng-
ing procedure performed to treat delicate structures
in the larynx, such as the vocal cords. It is performed
under high-magnification optics and requires the use
of a surgical laser and a microsurgical forceps for tis-
sue manipulation. Here, an entire TLM setup was
adapted for teleoperation as described below.

The patient-side setup was installed at the cadaver
lab of San Raffaele’s hospital in Milan. It included
a robotic laser micromanipulator (CALM [3]), a mi-
crosurgical forceps manipulated by a Franka Emika
Panda robot, a Karl Storz VITOM 3D exoscope,
a Deka SmartXide C60 surgical laser, and telecon-
ference equipment (webcam and speakers). These
devices were interfaced to a patient-side PC for in-
tegrated control and high-level communication with
the surgeon console. This was performed using a 5G
Radio Access Network.

Fig. 1: The two sides of the telesurgery setup, located
15 Km away from each other in this experiment.

Fig. 2: Diagram of the 5G telesurgery setup.

The surgeon-side setup was at the Vodafone Village
theater, located 15 Km away from the hospital. This
side of the setup featured a laptop, a 3D display,
a tablet for laser aiming control, and an Omega.7
haptic device for microsurgical forceps control. In
addition, two footswitches were used: one to activate
the surgical laser and the other to work as a clutch
for the Omega device. All devices were connected
to the laptop, which in turn was connected to the
patient-side setup using a 5G Radio Access Network.
A diagram illustrating the system setup connections
is shown in Fig. 2.

The 5G telecommunication system used was an ex-
perimental network installed in Milan by Vodafone
in the context of the “5G for Milan” project. This
network is being constantly upgraded as 5G tech-
nologies develop. Nonetheless, at the time of this
experiment (November 8, 2019), it was already able
to provide 650 Mbps (download), 60 Mbps (upload)
and one-way latency below 20 ms. In addition, a
secured connection was established using a private
dedicated access point name (APN). All communi-
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Table 1: Summary of major real-time data streams

Stream Bandwidth Surgeon ←→ Patient

Commands 10 Kbps −→
Teleconf A/V ≈ 3Mbps −→
3D HD video 2x 10 Mbps ←−
Teleconf A/V ≈ 3Mbps ←−

cations were confined to Vodafone’s core network for
maximum reliability, security and performance.
The major data streams transmitted over the 5G net-
work are listed in Table 1. They included both time-
critical signals (the two full HD videos captured by
the 3D exoscope and the commands issued by the
user interface devices) and non-critical teleconference
data. The surgical videos were captured at 30 fps and
encoded using H.264 to 10 Mbps, which was found
to be a very good compromise between image qual-
ity and required bandwidth. All data streams passed
through the same 5G connection.
The telesurgery experiment included preliminary mi-
crosurgery tests on silicon phantoms of human vocal
cords; a public live demonstration to over 300 peo-
ple using one of these phantoms; and a human ca-
daver trial. Expert ENT surgeons were in control of
the telesurgery system during all trials, and four of
them participated to the experiment. The quanti-
tative evaluation metrics used included video trans-
mission latency, time between received video frames,
and number of lost communication packages. In ad-
dition, qualitative assessment was provided by the
surgeons regarding the system usability, teleopera-
tion efficiency, and capability to perform typical mi-
crosurgical tasks.

RESULTS

The video transmission latency data collected dur-
ing the experiments is illustrated in Fig. 3. The
figure shows a representative period of 17.4 minutes,
demonstrating a stable streaming performance with
a total latency of 102 ± 9 ms. The minimum and
maximum recorded latency values were, respectively,
75.69 and 148.30 ms. The mean time between re-
ceived video frames was 33.43 ± 5.57 ms, and no
packages were lost during this period.
The qualitative feedback received from the surgeons
indicated high system usability and teleoperation ef-
ficiency. All surgeons were able to precisely control
the robotic devices without any prior training on
the system. The system latency was noted by all
of them, but they were able to quickly adapt to it,
so this was not remarked as a problem that would
prevent telesurgery. This was corroborated by the
fact that they were able to perform typical micro-
surgical tasks with great precision, including tissue
grasping, tensioning and excision using the surgical
laser. System setup and bed-side assistance proved
to be managed effectively through the teleconference
system, which enabled clear communication between

Fig. 3: Video transmission latency, measured between
the moment an image is captured and the moment it is
displayed to the surgeon. Red line shows the mean value.

the remote surgeon and the local assistants.
During the live public demonstration, the surgeon
performed the excision of a simulated tumor on the
vocal cord phantom, remotely manipulating the for-
ceps to grasp the tissue and the laser to precisely
cut it away. Then, during a subsequent private test
session, the surgeons successfully performed differ-
ent types of laser cordectomies on the cadaver vocal
cords, excising tissue that was subsequently removed
from the surgical site by a bed-side assistant.

DISCUSSION

Based on the results of this experiment, it is clear
that 5G has real potential to be an enabling tech-
nology for telesurgery. The developed system proved
to successfully exploit this new technology to enable
remote laser microsurgery, allowing delicate and pre-
cise control of the robotic instruments in realistic sur-
gical scenarios. This was true despite the round-trip
latency noticed by the surgeons, which can be con-
servatively approximated to twice the one-way video
latency, i.e., 200 ms on average with a maximum of
300 ms in the worst moments. These latency values
are already in the acceptable range for teleoperation,
but are bound to greatly decrease in the near future
as 5G technologies mature.
This first feasibility test was also highly successful
in terms of raising public awareness about surgical
robotics and their vast potential to improve health-
care. With 5G, it is now possible to envision a quick
progress of telemedicine, with applications ranging
from telementoring to telesurgery becoming main-
stream. However, this will require further R&D to
guarantee the safety and robustness of telesurgery
systems, and new public policies to deal with the
responsibilities and ethics of such procedures.
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INTRODUCTION 

Retinal vein occlusion (RVO) is one of the most common 

causes of vision loss [1]. This phenomenon is observed 

when an occlusion occurs in the retina vessel. This case 

is considered a very serious condition. When detected in 

an early stage, further vision loss could be prevented with 

different treatments, such as ocular massage, but often 

the already lost vision cannot be improved [2]. 

Microcannulation is a new type of minimally invasive 

surgery that exists out of injecting a drug into the retinal 

vein to dissolve the blood clot. The treatment is thought 

to potentially restore the vision. During retinal vein 

cannulation (RVC), instruments are inserted into the eye 

through a keyhole. The needle is to be positioned with 

very good precision in order to operate on the targeted 

micrometer scale structures [3]. Several factors influence 

the success rate of this procedure. These factors include: 

the physiological tremor of the surgeon [4], movement of 

the patient during the operation [5], the limited work 

space, an insufficient depth perception and visual 

feedback [3]. 

The introduction of robotics in minimally invasive 

micro-cannulation proved to increase the success rate of 

this procedure [6]. Different co- and tele-manipulated 

robots that are able to reduce the forces on the eye 

surface, increase the stability of the needle and eliminate 

the tremor of the surgeon, have been developed by 

multiple research facilities [3]. 

Although the use of robots has improved the 

development of the clinical intervention, multiple 

challenges still remain. Mainly, the limited visualization 

and depth perception increase the risk of double 

puncturing, that might severely damage the retina [3]. 

The purpose of this research is to model the eye geometry 

with external sensors. The model could then be used to 

create a virtual wall. This will limit the robot from 

reaching too far in the eye. In this way, for example, 

haptic feedback can be introduced such that the surgeon 

feels when he is approaching the virtual wall. 

Multiple attempts have been done in the search of an 

external sensor that could provide such information about 

the eye’s position in space. The first one is 3D 

reconstruction of the retina using a stereo-microscope 

[8]. The second one is the estimation of the distance from 

the needle tip through impedance sensing or optical 

coherence tomography (OCT)[9]. The third approach is 

by modeling the retina using the OCT C-scan 

reconstruction [10]. In this paper, eye gaze tracking 

technology will be explored to reconstruct a model of the 

human eye as a new sensing technique. 

MATERIALS AND METHODS 

The hardware used during this work is the eye tracking 

sensor Tobii X2-30. This sensor estimates in real time 

(i.e., up to 60 Hz) multiple parameters of both left and 

right eye such as: pupil diameter, gaze point and eye 

position. This data allows to extract other information 

from the eye such as the 3D position of the center of the 

pupil (gaze origine - GO) and the 3D position of the 

visual target on the screen (gaze position - GP) as shown 

in Figure 1. During the procedure, the user is positioned 

at approximately 65 cm from the eye tracker and a chin 

rest is used to stabilize his head during the experiment to 

make sure that only the eyes are moving. 

Figure. 1. Overview of the setting and information that can be 

gatherer using the Tobii sensor [7] 

For this work, two assumptions are made to evaluate the 

proposed technology: (a) the center of rotation of the eye 

is considered static while moving the eye and (b) the 

geometrical model of the eyeball is considered spherical. 

Based on these assumptions, the data set of the GO will 

belong to the surface of the spherical eye model. These 

data points are used to estimate the radius and the center 

of the sphere. To gather this data, the user is asked to 

follow with his/her eyes a certain pattern on the screen. 

During this process, n points of GO are recorded for a 

given GP on the screen and used as inputs for the model. 

A mathematical model was developed to estimate the 

best fitting sphere based on the least square method. 

Given that the eye tracker’s output tends to present 

significant noise and outliers, the RANSAC function was 

used to filter out the outliers and find the most 
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representative data points to construct the model. Figure 

2 depicts the general proposed method to get the best 

fitting geometry.  

 Figure. 2. Pupil tracking proposed diagram 

The sphere was calculated a number of times set by the 

user. On each iteration 20 random (give the best results) 

data points were taken to calculate the radius and center 

of the best fitting sphere with the least square method. 

The inliers (based on a threshold given by the user) and 

average error per inlier was calculated for each model, 

and the best model was returned by the function. 

RESULTS 

The mathematical model was tested under three different 

simulation: with ideal data, with added noise and with 5 

outliers added to the ideal data. The performance of the 

model was evaluated in terms of the average error found 

on the radius and the center of the estimated sphere for 

100 iterations. The impact of the RANSAC inputs was 

also investigated for a simulation with added noise. 

Figure 3 depicts the 160 ideal GP and 5 outliers used as 

input, while Figure 4 shows a graphical representation of 

the estimated sphere with 5 outliers added to the 

measurements. The modeling errors were found to be 

2.29 x10−13  mm. When a noise level of 0.1 mm was

added to the pupil’s center data set, the average error on 

the estimated radius and center of the sphere were of 

0.101 mm and 0.069 mm respectively. The introduction 

of outliers had an influence on the model and RANSAC 

had to be introduced to compensate for it.   

Figure. 3. Screen with GP, 160 ideal data points and 5 outliers 

Figure. 4. Eye surface modeled with the proposed method, 160 

ideal data points and 5 outliers. 

CONCLUSION AND DISCUSSION 

A new technique to model the geometry of the eye is 

proposed based on eye tracking sensor. A mathematical 

method was developed to estimate the best fitting model 

based on the sensor information using the pupil 

coordinates. The model uses the least square method to 

calculate the geometrical model. Furthermore, RANSAC 

was implemented to overcome the sensitivity of the least 

square method to outliers. Future work is foreseen to 

evaluate the precision and reliability of this method on 

variable eye shapes and real human eyes. 
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INTRODUCTION 

In the context of Robot-Assisted Minimally Invasive 

Surgery (RAMIS), this work aims to contribute to the 

development of a flexible simulated environment to train 

the da Vinci surgical robot (Intuitive Surgical, Inc., 

Sunnyvale, CA) with reinforcement learning (RL). The 

framework is tested on a pick and place task in which the 

robotic tool aims to pick the Pneumatically Attachable 

Flexible (PAF) rail [6] and to place it on a target organ. 

This surgical subtask requires fine manipulation and 

continuous adaptation at multiple levels: picking the rail 

from the most convenient configuration for task success, 

adjusting the tool's orientation according to the observed 

environment and its changing conditions and so on. 

These problems can be effectively answered by 

developing learning algorithms that will adjust the robot's 

behaviour in crucial parts of the task for a successful 

placement of the rail. This work builds on the da Vinci 

Reinforcement Learning (dVRL) [3] and aims to advance 

it with new objects, a PyRep [4] model and a GUI for 

recording demonstrations from the da Vinci Research Kit 

(dVRK) [5] master console. These additions contribute to 

the development of a flexible and reliable framework, 

which are fundamental properties to address the issues of 

generalising and reproducing research work in RL [2] 

and to speed up RL research in the field of RAMIS.  

MATERIALS AND METHODS 

System specifications: this work relies on CoppeliaSim 

[7] version 4.0.0 as physics simulator. The environment 

inherits from the goal-oriented environment of OpenAI 

Gym [1]. 

Simulation Environment: building on the previous 

work in [8], the environment is characterised by one 

Patient Side Manipulator (PSM) equipped with a Large 

Needle Driver (LND) tool. The model of the robotic arm 

has been developed in the PyRep framework to create a 

modular system. This enables to execute Python code and 

run the simulation synchronously, thus making the 

process of editing the scene and choosing the training 

algorithms simpler and faster compared to using a Python 

client that uses remote procedure calls to interact with the 

simulation. Moreover, a PyRep model, through a remote 

API, allows accessing features of the robot model that 

were previously inaccessible, because coded in Lua.  

The scene also presents an anatomically realistic kidney 

model [9], the PAF rail and a stereo-endoscope, as shown 

in Figure 1. A realistic texture was overlaid using 

explanted porcine kidney pictures. The PAF rail model, 

previously presented in [6], is characterised by a suction 

channel and a grasping pin running throughout its length. 

Eight grasping sites distinguish the graspable area for the 

sake of simplicity. The physics simulator works with 

approximated cuboid shapes to decrease the 

computational load because the detailed objects have 

complex meshes. The resulting surface approximation 

error is under 2 mm for the kidney. Furthermore, 

employing simple shapes facilitates the place task and 

laying the rail on a plane surface is more convenient. 

Rigid reactions to collisions allow to perform the pick 

and place task without issues like permeation of shapes 

and avoid unrealistic starting positions at reset. It is 

important to note how the proposed flexible framework 

allows the organ to be easily resized.  

Pick and place task: the environment has been 

developed to allow randomisation of the initial positions 

Figure. 1 The simulation environment comprised of a dVRK 

PSM (1), stereoendoscope camera (2), the PAF rail (3) and the 

kidney model with its markers (4). The emerging lilac cuboid 

in the kidney is its approximation. Here, the rail is placed. 
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of the objects, guaranteeing stochasticity. The 

randomisation volumes are normalized according to the 

initial position of the robot. Specific markers (dummies) 

have been used to mark the objects in the scene. The 

kidney has five couples of dummies on its top surface, 

randomly used as targets (coloured markers in Fig. 1). 

The rollout of the task is composed of the following 

phases:  

1. Definition of the scene objects’ initial positions;

2. The LND opens the gripper and approaches the

grasping site on the PAF rail;

3. The pick task is concluded when the gripper

closes and correctly grasps the rail;

4. The rail is moved towards the target;

5. The place task is concluded when the rail lays in

the designed area on the kidney’s surface.

The pick task is considered successful when the distance 

between the LND and the grasping site is below a certain 

threshold, set to 3 mm in this case. For the place task, two 

dummies positioned below the rail at opposite sides of its 

suction area must reach the targets on the kidney with a 

distance below such threshold. Opposite sides dummies 

on the rail are checked since, from experience, it is more 

likely that the suction is better performed when the 

opposite sides of the rail lay on the desired surface. 

Stereo-endoscope setup and calibration: two vision 

sensors have been added to the environment in order to 

reproduce the stereo-endoscope of the dVRK. The 

camera parameters have been replicated as the real ones 

[10], except for the resolution, set to half of the original 

value to avoid excessively long simulation time. The two 

cameras have been calibrated through MATLAB 

computer vision toolbox after creating a dataset of 

checkerboard images by extracting frames from the 

sensors in CoppeliaSim. The kidney reconstruction is a 

critical step for adding visual servoing in the simulated 

environment. Two dummies have been positioned on the 

top of the kidney to facilitate the analysis of the results. 

The reconstruction pipeline implemented via OpenCV 

libraries follows these steps: first, the images are rectified 

and then the kidney and the dummies are segmented from 

the frames. This is achieved by calculating the per-

element bit-wise conjunction of the image with colour 

masks, that specify which pixels fall between upper and 

lower HSV limits. Then, feature points were detected 

with the SURF algorithm [11] and matched across the 

two views of the sensors. Linear triangulation was 

exploited using the method in [12] to reconstruct the 3D 

positions of these points.  

GUI for demonstrations: using demonstrations is 

fundamental when solving an RL problem in robotics 

with vast continuous domains [3]. The simulation scene 

has been connected to ROS to control the simulated robot 

using the dVRK master console. In detail, a CoppeliaSim 

API is used to publish the state of the robot joints and 

gripper. The simulator subscribes to relevant topics so 

that the robot joints motion can be controlled via ROS. 

Although developed, this GUI has not been employed to 

obtain demonstrations from the dVRK master console 

due to limitations raised by the SARS-CoV-2 pandemic. 

RESULTS 

To learn the desired task, the robot has been trained on 

the pick and place phases separately. Currently, more 

research on the RL training is being carried out, 

confronting different state-of-the-art algorithms and 

focusing on improving results. Regarding the 3D 

reconstruction of feature points, the accuracy has been 

evaluated through the error computed in terms of 

Euclidean distance between a detected dummy and its 

known coordinates, obtaining a result of 10.8 mm. Basic 

tasks, such as opening the simulation containing the 

dVRK model using PyRep, have been carried out 

successfully. Initial tests for the modification of the robot 

scene are being carried out. 

CONCLUSION AND DISCUSSION 

In the view of contextual learning, this work lays the 

preliminary foundations for a ground for training where 

the agent can be robust to varying conditions, which is 

very common in the real surgical context. More research 

is being conducted, focusing on the training, transfer of 

the test case to the real system as well as implementing 

an accurate visual servoing in the 3D reconstruction and, 

lastly, building a preliminary framework to accelerate 

further research that will ultimately allow to deploy 

practical autonomous robotic assistance in surgery. 

REFERENCES 

[1] G. Brockman et al., “OpenAI Gym”, CoRR, vol. 

abs/1606.01540, 2016. 
[2] H. Nguyen et al., "Review of Deep Reinforcement 

Learning for Robot Manipulation", 2019 Third IEEE 

International Conference on Robotic Computing (IRC), 

Naples, Italy, 2019. 

[3] F. Richter et al., “Open-Sourced Reinforcement Learning 

Environments for Surgical Robotics”, 2019, 

arXiv:1903.02090 [cs.RO]. 

[4] S. James, et al., “PyRep: Bringing V-REP to Deep Robot 

Learning”, 2019, arXiv: 1906.11176 [cs.RO]. 

[5] Z. Chen et al., "Software Architecture of the Da Vinci 

Research Kit", 2017 First IEEE International Conference 

on Robotic Computing (IRC), Taichung, 2017. 

[6] A. Stilli et al., "Pneumatically Attachable Flexible Rails 

for Track-Guided Ultrasound Scanning in Robotic-

Assisted Partial Nephrectomy—A Preliminary Design 

Study", in IEEE Robotics and Automation Letters, vol. 4, 

April 2019. 

[7] E. Rohmer et al., "V-REP: A versatile and scalable robot 

simulation framework", IEEE/RSJ International 

Conference on Intelligent Robots and Systems, Tokyo, 

2013. 

[8] G. A. Fontanelli et al., "A V-REP Simulator for the da 

Vinci Research Kit Robotic Platform", 2018 7th IEEE 

International Conference on Biomedical Robotics and 

Biomechatronics (Biorob), Enschede, 2018. 

[9] R. Hayrullin, “Kidney”, Sketchfab, 2019, 

vshorturl.at/uKR27 

[10] D. L. Chow et al., “Supervisory control of a DaVinci 

surgical robot”, IEEE Int. Conf. Intell. Robot. Syst., 2017. 

[11] Bay H. et al., “SURF: Speeded Up Robust Features”, 

Computer Vision – ECCV 2006.  

[12] R.  Hartley et al., “Multiple View Geometry in Computer 

Vision”, Cambridge University Press, 2003. 

Proceedings of the 10th Conference on 

New Technologies for Computer/Robot Assisted Surgery (CRAS 2020)

35



1

Manipulability Analysis using a Coordinate Invariant Index with a Remote Center of
Motion Constraint in Surgical Robotics

Claudia Pecorella1, Bruno Siciliano1, Fanny Ficuciello1
1Department of Electrical Engineering and Information Technology

University of Naples Federico II
claudia.pecorella, bruno.siciliano, fanny.ficuciello@unina.it

I. INTRODUCTION

Medical robotics application is currently a growing field
of robotics, aimed to improve precision, enhance dexterity,
reduce invasiveness of operation and overall time of inter-
vention with a following reduction of the recovery time for
the patient. In these applications, multiple tasks are assigned
to the robot to ensure a safety and adaptable behaviour of
it, e.g. joint limits and obstacle avoidance, or manipulability
maximization. One of the big challenges in robotics assisted
surgery is the constrained manipulation of tissue through a
pivot point, referred to as Remote Center of Motion (RCM).
The significance of employing a robot is that it compensates
for the reduced number of DOFs that result from the RCM
constraint, enhancing dexterity.

When multiple tasks are assigned to the robot, besides
kinematic singularities, also singularities between tasks can
occur, namely tasks conflicts better known as algorithmic
singularities. When this kind of singularity occurs, the accom-
plishment of tasks with lower priorities could be compromised.
In a medical application this could represent a danger for
the patient, and thus it is necessary to monitor the kinematic
performances of the manipulator throughout the execution of
the task, being aware of the feasibility of it. We define a
coordinate invariant index, aimed to give an objective and
consistent measure of the robot manipulability.

II. METHODS

In the context of robotics-assisted minimally invasive
surgery the robot tool is inserted into the patient body through
an incision point, Ptrocar. The Trocar point is defined as a fix
point in the world frame through which the shaft of the tool
has to pass, and constitute the remote center of motion for the
manipulator. In section II-A the constrained kinematic as in
[1] is presented, followed by the proposed coordinate invariant
index in Section II-B and the obtained results in Section III.

A. Kinematic Constraint at a RCM

We will denote with PRCM ∈ R3 the RCM point that must
coincide with the trocar point Ptrocar ∈ R3. The RCM is
assumed to belong to a shaft attached at the end effector of
the manipulator, and can be located anywhere on the tool.
Following the formulation proposed in [1], the position of the
RCM over time is given by:

pRCM = pi + λ(pi+1 − pi) 0 ≤ λ ≤ 1 (1)

where pi and pi+1 denote the boundaries of the shaft. The
dependencies of the points coordinates from joint variables
and time are omitted for brevity.

Differentiating (1), and exploiting the differential mapping
between the joint space and the operational space, we obtain:

ṗRCM = JRCM (q, λ)

(
q̇

λ̇

)
(2)

where JRCM is the Jacobiano of the RCM, given by:

JRCM =

(
Ji + λ(Ji+1 − Ji

pi+1 − pi

)
(3)

To satisfy the RCM constraint, it has to be PRCM (t) ≡
Ptrocar(t), therefore ṗRCM = 0.

Indicating with t = f(q) a generic desired task, and
considering the differential kinematic between task and joints
velocities, it is possible to derive the differential kinematic of
the extended task which includes the above mentioned RCM
constraint.

ṫEXT =

(
ṫ

03×1

)
=

(
Jt 0nt×1

JRCM

)(
q̇

λ̇

)
= JEXT

(
q̇

λ̇

)
(4)

where nt is the dimension of the task space.
To guarantee exponential decoupled convergence of the

extended task to a desired value, we employed the following
kinematic control:(

q̇

λ̇

)
= J†EXT

(
Kt 0nt×3

03×nt KRCM

)
et (5)

where et is the vector containing the error of the task and of
the rcm, i.e. et =

(
td − t ptrocar − pRCM

)T
.

In (5) additional tasks could be considered and projected
into the null-space of the extended jacobian JEXT .

B. Coordinate Invariant Manipulability Index

As mentioned in the introduction, it is crucial to monitor
the proximity of a singularity and check the feasibility of a
stack of tasks. Most of the kinematic performance measures
proposed in the last decades are related to the concept of ma-
nipulability, dexterity and isotropy. In a singular configuration
the considered performance measure is zero, and it increases
as soon as the robot moves out of the singularity.

Manipulability measures are related to the concept of ma-
nipulability ellipsoids, proposed in [2], and its volume was
assumed to be a measure of uniformity of the mapping be-
tween joint and task spaces. The ellipsoids are used to analyse
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pure kinematic feasibility to arbitrarily generate end-effector
velocity or force in a certain joint configuration. It is not often
remarked, but manipulability ellipsoids are dependent from
the joint coordinate choice [3], i.e. arbitrarily manipulability
could be inferred for the same configuration depending on
the chosen coordinates in the joint space. Therefore, it is of
crucial importance the choice of the kernel of the quadratic
form which describes the ellipsoids’ equation in order to have
an objective measure.

Considering the mass matrix M(q) of the manipulator as a
metric tensor to redefine the sphere related to the joint veloci-
ties, we have the same ellipsoid no matter the parametrization
chosen for q̇ [3]. Following this reasoning, it is possible to
define velocity and force ellipsoids in the Cartesian space, as in
(6) and (7). The kernel in these equations is given by the inertia
in the Cartesian space (Λ = (JM−1JT )−1) and its inverse.
This matrix is the induced metric in the Cartesian space,
obtained by using M as a metric in the Joint configuration
space.

ẋT (JM−1JT )−1ẋ = 1, (6)

fT (JM−1JT )f = 1. (7)

The velocity and force ellipsoids in (6) and (7) incorporate
a strong physical meaning: their principal axis describe the
capability of the robot to produce end-effector velocities/forces
in certain directions taking into account not only the kinematic
structure of the robot, but also the dynamic constraints intrin-
sically expressed by the inertia matrix Λ; furthermore, they
are independent of the joint parametrization, which comes
as consequence of choosing a proper metrics in the Joint
Configuration Space [3]. Only ellipsoids obtained by choosing
a proper metric in the Joint Configuration Space reflects
physical properties of the robot. Other ellipsoids could infer for
the same configuration arbitrarily high or poor manipulability,
depending on the joint coordinates and the units chosen to
parametrize the Joint Configuration Space.

The manipulability measure related to the classical ellipsoid
expression is given by the square root of the determinant of

the ellipsoid’s kernel, i.e. w =
√
det(JJT ). Considering the

above mentioned metric, we consider the inertia matrix as a
coordinate invariant measure of manipulability:

w =

√
det(Λ−1). (8)

III. RESULTS

Here we want to compare our approach with the one
proposed in [4], during the execution of a trajectory which
could be compared to the first arch of circle made during a
suture, while satisfying the RCM constraint. In [4] a modified
variant of the measure of isotropy as the Frobenius condition
number of the Jacobian matrix is proposed. They argue that
due to the slow motion of a surgical task, they can decompose
it in a reach, only translational, or orient motion. In this way
the resulting manipulability index is unit-invariant.

As can be seen from Figure 1, the two indexes have a
different behaviour throughout the trajectory. In Figure 1a and
1c the trend of the manipulability index computed as in [4]
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Fig. 1: Comparison of the manipulability indexes: in 1a and 1c manipu-
lability computed considering the Frobenious norm, 1c considering only the
translational jacobian; in 1b and 1d the manipulability computed with our
approach, 1d - as in 1c - considering only the translational jacobian.

are depicted, more in detail in 1c it is depicted the trend of the
measure considering only the translational Jacobian. In Figure
1b and 1d our proposed index is reported. The two indexes
not only have different values, but also have opposite trends
when the whole Jacobian is considered, and in both cases, if
the measure is considered only for the reach motion, we have
a smaller value of the manipulability.

IV. CONCLUSIONS AND DISCUSSION

A coordinate invariant manipulability index has been pro-
posed, which could be useful for the on-line detection of
algorithmic singularities. Further research direction would be
to investigate an appropriate reactive control schemes (to be
decided according to the specific application) to manage the
conflict situations. We aim to evaluate the proposed manipula-
bility index in a human-robot interaction framework, adopting
an impedance control algorithm to hand guide the manipulator.
In addition, we want to consider a stack of tasks, so to consider
also other crucial aspects such as distance from joint limits,
obstacle avoidance and manipulability maximization. In this
framework, we aim to study the feasibility of the stack with
the imposed RCM constraint.
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INTRODUCTION 

The future generation of surgical robotic systems will 

provide an increased level of autonomy. All minimally 

invasive surgical (MIS) procedures are composed of a 

series of repetitive subtasks like dissection, suturing and 

knot tying, that extensively deal with the manipulation of 

soft tissues. Automation of these subtasks would bring 

several benefits to MIS, among which enhanced 

precision in tool control and increased dexterity, which 

would eventually lead to improved operator comfort. 

Some attempts to automate these repetitive sub-tasks 

have been already proposed [1]. However, these 

approaches use hand-crafted control policies which work 

well in laboratory conditions but perform poorly within 

the highly-variable surgical environment. Hence, 

autonomous surgical systems should be able to 

manipulate highly deformable and dynamic soft tissues 

in a robust and efficient way. 

Deep Reinforcement Learning (DRL) offers a good 

framework to model such hard-to-engineer behaviours 

[2]. DRL has shown promising success in industrial 

robotic systems to extract useful feature representations 

from images and learn to perform an optimal action [2]. 

Most of the works based on DRL for soft-tissue 

manipulation have focused on 2D deformations such as 

clothing articles [1], [3]. To tackle issues such as clinical 

safety, ethics, economical and hardware risks, various 

studies have proposed to train autonomous agents in a 

simulated environment. Then the learned policies can be 

transferred to a real system based on a  sim-to-real 

approach [4]. 

In the context of clinical applications, soft tissues are 

usually simulated using finite element models (FEM) due 

to their high accuracy in simulating soft tissues dynamics 

[5]. However, high accuracy implies high computational 

time, which makes it impractical to employ FEMs in 

DRL framework, where a huge number of trial and error 

attempts are needed. A possible alternative to FEM is 

represented by non-physics based methods, such as 

Position-Based Dynamics (PBD). PBD has been 

demonstrated to model anatomical tissues deformations 

to an acceptable degree of accuracy while keeping the 

computation time low [6]. 

In this work, we introduce a soft-tissue simulation 

framework that replicates the preliminary steps of partial 

nephrectomy procedure. Furthermore, we show that an 

end-to-end reinforcement learning algorithm can be 

trained in the simulation without any user demonstration 

to accomplish a tissue manipulation task. To the best of 

our knowledge, this is one of the first attempts of using 

DRL agents to manipulate soft tissues for autonomous 

surgical action execution.   

Figure. 1. Environment scene developed in Unity3D for robot-

assisted nephrectomy procedure. The scene consists of a single 

PSM arm, kidney, tumour and renal fascia (fat tissue). For 

visual simplicity, high contrast colours are used to depict 

various objects 

MATERIALS AND METHODS 

Simulation details: Our simulation environment relies 

on the Unity3D engine (Fig 1). In addition to the high 

flexibility and modularity offered by this development 

platform, which allows adding custom objects and 

sensors to the scene, Unity enables the modelling of soft 

objects exploiting the efficient PBD implementation 

provided by NVIDIA FleX. All the deformable structures 

present in our environment (kidney, tumour and 

surrounding fat tissue) have been modelled using FleX, 

and deformation parameters have been tuned with an ad-

hoc experiment to provide realistic behaviour [6]. In the 

proposed virtual environment, we modelled a single slave 

arm of the da Vinci Research Kit (dVRK) setup, that is, 

a Patient Side Manipulator (PSM) equipped with a Large 

Needle Driver (LND) instrument having jaw gripper to 

grasp objects. We implemented a closed-form inverse 

kinematics of the PSM to enable the Cartesian space 

control of the manipulator. We define the tissue grasping 

condition based on proximity; in particular, we check 

when the distance between LND tooltip and the fat 

surface is less than 2mm. We set a bound to the maximum 

limit of movement of the end-effector (EE) by a 

predefined delta movement ∆ parameter. 

Reinforcement learning: RL is a trial and error 

optimisation technique that defines a Markov decision 

process (MDP) where an agent learns by interacting with 

the environment. An MDP is characterised by a state 

space S, action space A, and a reward function 𝑅 ∶
𝑆 × 𝐴 → 𝑅 that encapsulates the goal. At each time step 

t, the environment produces a state observation 𝑠𝑡 ∈ 𝑆,

the agent then samples an action 𝑎𝑡 ∼ μ(𝑠𝑡),  𝑎𝑡 ∈ 𝐴 and

μ: 𝑆 → 𝐴 represents a behaviour policy. As a 

consequence, the environment then yields a reward 𝑟𝑡

sampled from R and the agent moves to a new state 𝑠𝑡+1

sampled from a transition probability function 
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𝑃(𝑆′ = 𝑠𝑡+1|𝑆 = 𝑠𝑡 , 𝐴 = 𝑎𝑡) . The agent's goal is to 

maximise the expected future discounted reward: 

𝐺𝑡 = 𝐸𝑠0→𝑇,𝑎0→𝑇−1,𝑅0→𝑇−1
[∑ γ𝑖𝑅𝑖

𝑇−1

𝑖=0

] 

where T is the time horizon and γ ∈ [0,1] is the discount 

factor. 

Experiment: The experiment aim is to move the PSM 

arm from an initial position 𝑃0 to a position close to the 

tumour 𝑇0 , grasp the fat and retract it to a predefined 

target position 𝑃𝐹 . The state and action space of the 

environment at timestep 𝑡  is 𝑆𝑡 = [𝑃𝑡 , 𝑃𝐹 , 𝑇0,, 𝐺],  𝐴𝑡 =
[−1,0,1] ∗ ∆, where 𝑃𝑡 , 𝑇0, G are the position of the EE, 

tumour and gripper state, respectively. The reward 

function is: 

r(𝑠𝑡) = { 
−𝑑(𝑃𝑡 , 𝑇0) ∗ 𝑘           𝑖𝑓 gripper close

−𝑑(𝑃𝑡 , 𝑃𝑓) ∗ k            if gripper open
 

Where d denotes the distance function, and 𝑘  is a 

constant that depends on the volume in which PSM can 

move. The gripper state changes automatically when a 

grasping event is detected. Each episode consists of 1500 

steps. We use Proximal Policy Optimisation (PPO), 

which is the state-of-the-art DRL algorithm supported by 

MLAgents framework provided by Unity [7]. 

RESULTS 

 
Figure. 2. Learnt policy from two different starting position of 

the PSM arm. 

Fig 2. highlights the final state of the learnt behaviour 

where the PSM arm approaches, grasps the fat tissue and 

consequently exposes the underlying tumour. The figure 

depicts the dynamic and flexible nature of the soft tissue 

that is rendered in the simulator.  

Fig 3. shows the learning curve, that is, the number of 

steps taken to reach a higher cumulative reward. The 

agent requires 3 million steps to learn the manipulation 

task. This result is comparable to the training steps 

required to grasp rigid objects [8].  From the reward 

trend, it emerges that the agents require 500 thousand 

steps to learn the approach behaviour towards the fat, the 

subsequent 1.5 million steps to learn the interaction with 

the fat and finally 1 million steps to learn the retract 

behaviour. Note that the behaviour is learnt without any 

visual cues and purely on the basis of positional 

information. The training is carried out on an NVIDIA 

TitanX GPU with 16 parallel workers and takes 3hrs in 

real-time.  

CONCLUSION AND DISCUSSION 

This work is a preliminary step towards developing 

autonomous agents for controlling surgical tools and 

manipulating soft tissues. Future work would be focused 

on autonomous control using visual cues and developing 

a metric to evaluate the trajectory/behaviour learnt. We 

 
Figure. 3. The obtained learning curve. The cumulative reward 

is normalised in the range [−1,0]. The shaded area spans the 

range of values obtained when training the agent starting from 

three different initialisation seeds.  

plan to extend the work towards using model-based 

approaches and incorporating imitation based learning 

using expert demonstration to bootstrap the number of 

training steps. Subsequent directions would be carried 

out to transfer the learned knowledge to a real-robotic 

system.   
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INTRODUCTION 

Despite their broad use in surgical interventions, 

traditional laser systems require a direct line-of-sight to 

the surgical target. In contrast, endoscopic laser systems 

allow minimally invasive access by using flexible optical 

fibers for delivering the laser much closer to the surgical 

site. This presents significant advantages including better 

visualization of the target, control over the laser delivery 

angle and the ability to reach targets inaccessible by a 

straight-line trajectory [1]. Unfortunately, the limited 

space in endoscopic laser tools has so far prevented the 

integration of complex optical systems for controlling the 

focusing and scanning of the laser beam, such as those 

commonly seen in traditional laser systems. 

Without focusing units, current endoscopic laser tools 

use optics with fixed focal length or use no optics at all, 

placing the tip of the fiber in close proximity of the tissue 

being ablated. When fixed focus is used, the distance 

between the tool and the target must be constantly 

adjusted by the surgeon, which not only hinders the 

precision of the ablation procedure, but also increases the 

surgeon's mental workload. On the other hand, placing 

the tip of the fiber too close to the target results in 

excessive thermal damage to the surrounding tissue, 

often leading to tissue carbonization [2]. This suggests 

that the performance of endoscopic laser tools could be 

significantly improved by incorporating a compact 

optical system with variable focal length. 

One key technology for enabling such focusing system 

are varifocal mirrors (VM), which consist in optical 

elements whose surface can be dynamically deformed. 

This allows changing their focal length without the need 

of physical displacement. In a recent work [3], we 

developed an elliptical MEMS varifocal mirror with 

microfluidic actuation for focusing a CO2 laser beam in 

an off-axis configuration. Here we propose a compact 

auto-focusing (AF) system based on such mirror and a 

sensorless actuation method for controlling the VM. 

MATERIALS AND METHODS 

Fig. 1 shows a schematic representation of the proposed 

AF system. In this system, the laser beam coming from 

the optical fiber is collimated by the collimating lens and 

focused by the combination of the VM and a prefocusing 

lens with focal length 𝑓𝐿. When the VM is flat, the focal

length of the system 𝑓𝑠𝑦𝑠 is equal to 𝑓𝐿.  However, when

the VM is deflected in convex or concave shape, 𝑓𝑠𝑦𝑠
becomes greater or lower than 𝑓𝐿, respectively.

Fig. 1 Schematic diagram of the proposed AF system. 

The focal length 𝑓𝑠𝑦𝑠 of the system is determined by the

focal lengths of the VM (𝑓𝑀) and the prefocusing lens

(𝑓𝐿), as well as by the distance 𝑑𝐿  that the laser travel

between them. When 𝑑𝐿 = 𝑓𝐿 , 𝑓𝑠𝑦𝑠 is obtained as:

𝑓𝑠𝑦𝑠 = 𝑓𝐿 − 𝑃𝑀𝑓𝐿
2
 , (1) 

where 𝑃𝑀 = 1/𝑓𝑀 is the optical power of the VM. This

condition is important, as it makes the numerical aperture 

of the focused beam independent of 𝑃𝑀, allowing to shift

the focal point of the laser without changing the diameter 

of the focused spot. The optical power of the VM is 

determined by the pressure ∆𝑝 applied to the actuation 

channel and is given as 𝑃𝑀 = 4𝑤0/(𝑅𝑥𝑅𝑦) , with 𝑤0

being the central deflection of the mirror and 𝑅𝑥 and 𝑅𝑦
being its semi-major and semi-minor axes. The 

relationship between 𝑤0 and ∆𝑝 can be obtained as:

∆𝑝 = 2ℎ𝑅𝑘𝜎𝑤0 +
2ℎ𝐸𝑅𝑘

2

3(1−𝜈)
𝑤0

3 ,
(2) 

where ℎ is the thickness of the membrane mirror, 𝐸 and 

𝜐  are the Young’s modulus and Poisson’s ratio of the 

membrane material, 𝜎  is its residual stress and 𝑅𝑘  is

given by 𝑅𝑘 = (𝑅𝑥
2 + 𝑅𝑦

2)/(𝑅𝑥
2𝑅𝑦

2).

Based on this model, the focal length of the system can 

be completely determined by the applied actuation 

pressure. Therefore, one method for controlling the 

proposed AF system is to measure the distance to the 

target 𝑑𝑡 using 3D surface reconstruction [4] and  to set

𝑓𝑠𝑦𝑠 = 𝑑𝑡. The advantage of this method is that it does

not require using a beam splitter or other sensors 

commonly used in AF systems [5], since the 3D 

reconstruction can be performed with the stereo camera 

already present in the endoscope. This sensorless control 

approach is critical for allowing the AF system to remain 

compact. 
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RESULTS 

To evaluate the proposed AF controller, we assembled 

the VM into the AF tool shown in Fig. 2. Here the 

actuation pressure Δ𝑝 was controlled by a microinjection 

system and the laser beam used was a 10 mW fiber-

coupled LED. The AF tool was attached to a linear 

positioning stage (PS) placed in front of a fixed target, 

which consisted of a sheet of paper. Using the PS, the 

distance between the AF tool and the target was changed 

from 15 to 50 mm, while the focal length of the system 

was adjusted by the AF controller. The distance to the 

target was obtained directly from the encoder of the PS 

(simulating an ideal distance sensor) and the diameter of 

the focused laser spot was measured by a high-speed 

camera. The precise values of the parameters of (2) were 

obtained empirically before the experiment, using a 

wavefront sensor, as described in [3]. 

Fig. 2 Developed prototype of an auto-focusing system based 

on a MEMS varifocal mirror.  

Fig. 3 shows the measured laser spot diameter when the 

AF tool was moved with and without using the AF 

controller. Without the AF controller, 𝑓𝑠𝑦𝑠 was kept equal

to 32 mm, which caused the laser beam to defocus as the 

target moved away from this point. At the maximum 

defocusing, the spot diameter reached 1.2 mm. On the 

other hand with the AF controller enabled, the spot 

diameter remained between 620 and 646 µm, which 

corresponds to 2% of variation over the central value of 

633 µm. This confirms that the mirror deflection model 

is accurate and validates the proposed AF controller. 

Fig. 3 Obtained laser spot diameter with and without the 

proposed AF controller. 

DISCUSSION 

Based on the obtained results, it is possible to draw some 

conclusions about the proposed AF system. In terms of 

performance, the developed AF tool was able to focus the 

laser beam with high precision for a distance range 

compatible with endoscopic laser surgery. The obtained 

laser spot diameter was higher than typical values for 

fiber laser tools (around  250 µm), but it can be further 

reduced by increasing the numerical aperture of the laser 

beam. The motion of the AF tool was performed at low 

speed (1 mm/s) due to the limitations of the positioning 

stage. Further experiments would be required in order to 

verify the performance of the system in the presence of 

fast motion. Finally, the use of a simulated distance 

sensor may have contributed to the precision of the AF 

controller. However, using a 3D reconstruction method 

such as reported in [4], it is possible to measure the 

distance to the target with an average error of 0.2 mm. 

Considering all that, we believe that the obtained 

performance of the AF system makes it a promising 

solution for endoscopic laser tools. 

In terms of compactness, the fabricated AF tool is 

relatively large, mainly due to the mirror holder (which 

is 40 mm long), but it can still be miniaturized. The 

overall diameter of the tool depends mainly on the 

diameter of the optical elements being used. Since the 

dimensions of the varifocal mirror are 3 x 4.24 mm, it is 

reasonable to assume that the diameter of the entire tool 

can be made within 12 mm. This would make the tool 

compatible with standard surgical endoscopes, assuming 

it to be incorporated in the endoscope design. The length 

of the system, in the other hand, depends mainly on the 

prefocusing lens, since its distance to the VM must be 

equal to 𝑓𝐿. Reducing 𝑓𝐿 can make the tool shorter, but it

also affects the focal length range Δ𝑓𝑠𝑦𝑠  of the tool.

Therefore the optimization of 𝑓𝐿 must take into account

the required focal length range for one specific 

application.  
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INTRODUCTION 

The latest research in robotic surgery has increasingly 

focused on the automation of surgical tasks. The main 

challenge faced by an autonomous surgical robot is to 

learn how to safely interact with the deformable 

anatomical environment, whose dynamic behaviour is 

complex and thus difficult to predict. In this context, 

simulation plays an important role in supporting the 

decisions that the autonomous system has to make. In 

addition to providing an environment where the planned 

actions can be safely tested pre-operatively, simulation 

can also be exploited intra-operatively to complement 

information coming from sensors. Furthermore, some 

recent works have proposed to exploit Deep 

Reinforcement Learning (DRL) methods to learn robot 

manipulation tasks on a realistic replica of the surgical 

environment before transferring the policies to the real 

system, coping with the shortage of real clinical data 

which would be needed for agent training [1]. 

Among the different strategies that can be employed to 

simulate the deformable behaviour of living tissues, 

position-based dynamics (PBD) has proved able to 

achieve fast and unconditionally stable simulations, both 

representing important requirements in robotics 

applications [2]. However, in order to rely on simulation 

results, it is essential to guarantee that the simulated 

environment represents an accurate replica of the real-

world scenario where the robot will be acting. A-priori 

knowledge of each organ dynamic behaviour is almost 

impossible to obtain from pre-operative information. 

Even though this information was available, a direct way 

to convert real mechanical properties into PBD 

parameters does not exist. A possible approach to tackle 

the issue is to estimate soft tissues properties with an ad-

hoc optimization technique on the scenario of interest 

exploiting information coming from sensor data [2, 3]. 

In this work, we present a method to estimate the 

deformability properties of soft tissues employing visual 

observations, during a representative manipulation task 

performed with the da Vinci Research Kit (dVRK). The 

preliminary results obtained on a phantom experiment 

have shown that the proposed method is able to estimate 

parameters which minimize the gap between the real and 

the simulated configurations. This work represents a first 

promising step towards the improvement of simulations 

realism, to an extent that will make their exploitation into 

real clinical scenarios possible. 

MATERIALS AND METHODS 

In this work, we optimize the elastic properties of soft 

tissues during a simple manipulation task, where a single 

dVRK Patient Side Manipulator (PSM) grasps and lifts a 

rectangular silicone patch with one fixed side, whose 

elastic properties replicate those of connective tissues. 

The grasping points are distributed over the non-fixed 

sides and the internal surface (Figure 1). We perform a 

total of 10 acquisitions where the dVRK lifts the 

deformable tissue to a maximum height of 48 mm, with 

three intermediate steps (L=3). For each experiment, we 

acquire the point cloud representing the real state of the 

soft tissue surface with an Intel RealSense D435 RGB-D 

camera. The joint states of the robot manipulator at the 

considered timestamps are also saved since they will be 

needed to reproduce the arm movements in the simulated 

environment. Color-based segmentation is applied to the 

raw point clouds to extract only the points belonging to 

the deformable tissue. Then, a post-processing is 

performed to clean the point clouds and remove 

acquisition noise. Each point cloud is then matched with 

its corresponding arm configuration, based on the 

acquisition timestamps. 

Figure 1: One optimization experiment. Left: rest 

configuration. Right: deformed configuration. The dVRK PSM 

grasps and lifts the tissue, whose deformed surface is acquired 

with the depth sensor. 

The simulated environment is based on Unity3D, where 

the dVRK robotic arm is simulated with dVRK-XR 

(dVRK Mixed Reality Extension) [4]. An important 

preliminary step to the optimization process consists on 

the rigid alignment of the simulated and the real scenes. 

This is done by mapping the poses of the PSM in a 

common reference space by reaching several points on a 

custom calibration board, which is placed at the centres 

of the two reference systems. The calibration has a 1.3 

mm error. Soft tissue simulation is obtained exploiting 

NVIDIA FleX implementation of position-based 

dynamics, where deformable objects are modelled as 

systems of particles divided into several clusters. The 

parameters with the highest impact on objects 

deformable behaviour are those describing the position of 

the different clusters in space and their relative 

constraints: cluster spacing, radius and stiffness. 

Therefore, these are the parameters of interest in our 

optimization. To properly simulate the tissue, particles’ 

diameter is set to 3 mm and volume sampling is set to 2, 
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resulting in a two-layer structure with the same width of 

the tissue. All the other simulation parameters are kept 

fixed for the whole process, using the same values as [2]. 

Parameters Lowest Highest Optimal 

Cluster Spacing 0.05 1 0.153 

Cluster Radius 0.025 0.5 0.113 

Cluster stiffness 0.1 0.9 0.631 

Table 1: Upper and lower bounds defining the search space for 

the parameters of interest, and optimization results. 

For each experiment, the previously collected joint states 

are fed to the simulated PSM arm.  Direct kinematics 

allows to get the position of the end effector, which 

grasps the FleX object surface, modifying the position of 

those particles that are within a pre-defined distance from 

the end effector. The other particles follow the grasped 

ones and the object assumes a deformed configuration 

which depends on the current simulation parameters.  

The optimization process is performed with the genetic 

algorithm scheme, which avoids being trapped in local 

optimal solutions, exploiting the implementation 

provided by MATLAB global optimization toolbox [2]. 

The algorithm explores a wide range of values over the 

entire search space (Table 1). To prevent the algorithm 

from trying unacceptable configurations, we define a 

custom constraint which ensures that generated clusters 

always overlap (i.e., cluster radius is at least half of 

cluster spacing). To be sure that the optimal parameters 

are able to generalize, the optimization process is 

performed considering different grasping experiments (N 

= 6). The goal of this process is to estimate the set of 

parameters that gives the best matching between the real 

and the simulated data. To achieve this, our method 

minimizes the following error metric e:  

𝑒 = ∑ ∑ ∑ ‖𝑿𝐺𝑁𝐷(𝑙, 𝑛) −  𝑿𝑆𝐼𝑀(𝑙, 𝑛)‖

𝑀

𝑚=1

𝐿

𝑙=1

𝑁

𝑛=1

  (1) 

It corresponds to the sum of the Euclidean distances 

(‖∗‖) between each of the M particles composing the 

simulated data (XSIM) and the closest point of the ground 

truth (XGND ).  

RESULTS 

The optimization process converges to the values 

reported in Table 1. The final optimization error is 109.5 

mm, which corresponds to an average error of 2.8 mm 

per particle. This error is obtained as ratio between the 

final optimization error and the total number of particles 

considered in the process (𝐿 ⋅ 𝑁 ⋅ 𝑀). In order to assess 

the goodness of the estimated parameters, we introduce a 

new evaluation metric which allows to consistently 

compare real and simulated data. Since ground truth 

provides information only relative to the visible portion 

of the tissue, we reproduce the same partial view of the 

object that the RGB-D sensor experiences on the real 

setup. The error is calculated in the same way as Equation 

1, but the number of considered particles is now 

represented by M’, which includes only those particles 

which are visible from the RGB-D sensor. Furthermore, 

the evaluation error is computed on a broader set of 

experiments which includes samples not considered 

during the optimization. The final evaluation error is 2.6 

mm (±1.2). Considering that this metric includes also the 

calibration error, we are able to reach an overall error 

which is lower than the width of the considered tissue, 

achieving a simulation which is highly representative of 

reality, as can be qualitatively seen in Figure 2.  

Figure 2: Ground truth point cloud (yellow) and deformed soft 

tissue with the estimated parameters (red). Figure shows two 

different experiments corresponding to the two greatest input 

deformations.   

The obtained error is higher for samples with higher input 

deformation, suggesting that the considered set of 

parameters might not be able to capture the entire tissue 

dynamics. The obtained parameters allow our simulation 

to achieve a degree of accuracy which has made it 

possible to successfully employ it in a sim-to-real 

reinforcement learning framework [1].   

CONCLUSION AND DISCUSSION 

Leveraging only on vision and kinematic data, which are 

commonly acquired in a surgical scenario, the proposed 

optimization method has shown promise for estimating 

the elastic properties of soft tissues, relying on a set of 

representative manipulation actions.  This method has 

proved able to minimize the gap between simulation and 

reality, achieving a sufficient accuracy level to 

successfully learn soft tissue manipulation tasks in 

simulation by a DRL agent. Future work will focus on 

comparing the presented method with different 

simulation methods, for example based on continuum 

mechanics (i.e. SOFA framework), and testing them with 

more complex geometries and tasks, moving towards 

more realistic clinical settings.  
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INTRODUCTION 

Nowadays, one of the most appealing and debated 

challenge in robotic surgery is the introduction of certain 

levels of autonomy in robot behaviour [1] implying 

technical advances in scene understanding and situation 

awareness, decision making, collision-free motion 

planning and environment interaction. The growth of 

R&D projects for autonomous surgical robotics (e.g. EU 

funded I-SUR, MURAB and SARAS) demonstrates the 

confidence and the expectations of the medical 

community on the benefits of such technologies. SARAS 
aims to develop assistive surgical robots for laparoscopic 

MIS, autonomously operating in the same workspace of 

either a teleoperated surgical robot or a manually driven 

surgical tool. The auxiliary robots autonomously decide 

which task perform to assist the main surgeon, planning 

motions for executing the task considering the dynamics 

of human driven tools and patient's organs (predictable 

only within a short time horizon). This paper proposes a 

control architecture for surgical robotic assistive tasks in 

MIS using a hierarchical multi-level Finite State Machine 

(hFSM) as the cognitive control and a two-layered 

motion planner for the execution of the task. The hFSM 
models the operation starting from atomic actions to 

progressively build up more complex levels. The two-

layer architecture of the motion planner merges the 

benefits of an offline geometric path construction method 

with those of online trajectory reconfiguration and 

reactive adaptation. At a global level, the path is built 

according to the initial knowledge of the operating scene 

and the requirements of the surgical tasks. Then, the path 

is reconfigured with respect to the dynamic environment 

using artificial potential fields [2]. Finally, a local level 

computes the robot trajectory, preserving collision-free 
property even in presence of obstacles with small 

diameter (i.e. the manually driver surgical instruments), 

by enforcing a velocity modulation technique derived 

from the Dynamical Systems (DS) based approach of [3]. 

MATERIALS AND METHODS 

The surgical tasks of the auxiliary robots in the surgical 

environment are modelled as a three-level hFSM: 

• Surgeme level: this level are sequences of simple

movements that can be performed by the robot (the

surgemes) to form actions.

• Action level: this level is made of a sequence of

actions (a simple tool task with a defined objective)

to perform operation phases.

• Phase level: a real surgical procedure is decomposed

into a sequence of phases (a complex of surgical

actions with a defined intention or objective with a

clear beginning and end).

A scheme of the three levels of the hFSM for the Bladder 

Mobilization task is shown in figure 1.  

Figure. 1 Scheme of the hierarchical FSM 

The transitions between the phases and the actions can be 

triggered using algorithms of scene understanding, action 

recognition and action prediction or by direct commands 

of the main surgeon. The transitions between the 

surgemes are triggered by the inner controls of the robot 

or by the motion planner as soon as the relative task is 

accomplished. Once the surgeme to be executed is 

determined by the cognitive control, the motion planner 

generates the trajectory (if the surgeme requires a 

movement) to accomplish the task. The first layer of the 
motion planning module, called Dynamic trajectory 

reconfigurator (DTR), generates a trajectory defined by a 

set of free of collision control points (CPs) using the 

current and goal points as well as collision risk 

information computed as in [4] and the constraints on the 

motion such as direction to follow at the end or the 

Proceedings of the 10th Conference on 

New Technologies for Computer/Robot Assisted Surgery (CRAS 2020)

44



beginning of the motion. The DTR computes an initial 

smooth trajectory (C1 third order polynomial) from the 

current pose to the goal pose (which can be dynamically 

updated by the hFSM during the trajectory) with the 

constraints given by the hFSM. This layer returns a set of 

equally spaced CPs that represent the trajectory. At each 

control step, the DTR reconfigures the CPs to ensure that 

the trajectory is collision free in the dynamic 

environment. These CPs are adapted using artificial 

potential fields. Each CP is represented as a mass affected 
by the attraction force to its original position, a repulsion 

force generated by the other elements in the workspace 

and a force in the direction of the neighbouring CPs to 

maintain the coherence in the movement. Moreover, a 

Depth Map 2D matrix (DM) is computed at each CP to 

ensure that the whole tool (not only the tip) follow a 

collision free trajectory. The elements (i,j) of the DM 

matrix represent the maximum depth reachable for the 

tool in the direction θi, ϕj (spherical coordinates). The CP 

is transformed into spherical coordinates with origin in 

the insertion point of the tool (RCM) to be compared with 
the values in the DM; if the depth value of the CP is 

higher than the corresponding element of the DM, the 

trajectory passing trough that CP would lead a part of the 

tool to collide with an obstacle, so the CP receives an 

attraction force towards the RCM in order to be moved 

to a new position. Finally, the DTR uses the collision free 

CPs to generate a Catmull-Rom spline that represents the 

trajectory. The coefficients of this spline are sent to the 

second layer.  The DTR ensures that the CPs are collision 

free but does not guarantee that the trajectory between 

two consecutive CPs is collision free too: in fact, the 

surgical scenario includes cylindrical tools with very thin 
diameter which can be smaller than the distance between 

two adjacent CPs. Thus, the second layer, called local 

modulation planner, is the responsible to compute free 

collision trajectories between each consecutive pair of 

CPs exploiting an approach based on the algorithm 

described in [5]. This algorithm modulates the desired 

velocity of the robot to obtain a new velocity which 

drives the robot on a collision free trajectory. The 

modulation is performed by means of a matrix computed 

analytically from the geometric features of the obstacles. 

Since the modulation changes the original trajectory of 
the robot given by the CPs, a recomputiation of the spline 

is necessary at the end of the modulation to obtain the 

new trajectory until the next CP. This new spline will be 

used in the next control step t+1 to compute the desired 

velocity. 

RESULTS 

The method has been validated by performing a realistic 

surgical task both in a simulated environment and on a 

real setup. The phase chosen for the validation is the 

bladder mobilization of the Robotic Assisted Radical 

Prostatectomy. Figure 1 shows the decomposition of this 

phase in actions and surgemes. In this phase, the SARAS 
tools must push down the bladder to make space for the 

main surgeon avoiding any type of collision with the 

main tools and the environment. This phase has been 

chosen because it contains almost all type of surgemes 

and the trajectory planning has to perform different types 

of constraint in the movement. This phase is composed 

of four consecutive actions. In the first action 

(Approach), the tool is placed over a determined point of 

the bladder surface. Then the tool pushes the bladder 

down (Bladder push), creating free space for the surgeon. 

The pushing position and depth can be changed if 

required with the Change push point action. Finally 
(Release), the tool releases the bladder and exits to a safe 

pose. An emergency action is included to place the tool 

in a safety pose and exit the action. A snapshot of the 

approach trajectory (Spline end surgeme for a spline 

trajectory with constraint on the direction at the end of 

the motion) of the Approach action is shown in Figure 2. 

Figure. 2 Example of the trajectory computed and dynamically 
updated for approaching a virtual bladder 

CONCLUSION AND DISCUSSION 

We proposed a cognitive control architecture for 

autonomous execution of assistive task in R-MIS. This 

architecture is based on a three-level hFSM that models 

the surgical operation and on a two-layer motion planner 

which ensures the correct execution of the motions. The 

proposed architecture has been successfully validated on 
a realistic surgical task both in a simulated environment 

and on a real setup. 
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INTRODUCTION
During the execution of a surgical procedure, in Minimally
Invasive Robotic Surgery (MIRS), two or more tools can
come dangerously close to each other. The surgeon has a
limited vision on the surgical site, which reduces dexterity
and increases the cognitive workload. Moreover, collisions
can cause tools or tissues damage. Haptic feedback could
significantly affect the performances of novice surgeons,
reducing training duration and improving the effectiveness
of the procedures. A large number of surgical tasks can
benefit from the introduction of haptic feedback, such as
robotic polypectomy [1]. Collisions between surgical tools
in MIRS can be avoided with the application of shared
control techniques, such as Virtual Fixtures. Forbidden
Region Virtual Fixtures (FRVF) can be used to restrict
the motion of the robot’s tool through a repulsive force
rendered to the surgeon. The da Vinci Research Kit (dVRK)
is already used to test VF-based methods [1] [2]. Since
dVRK robot joints are driven through cables that introduce
elasticity, backlash and nonlinear friction [3], tools pose
obtained through direct kinematics is affected by errors.
Therefore, to ensure a correct application of the VF, a
method for tool tracking is strictly needed. In our work,
we propose a surgical tool collision-avoidance method,
to improve safety in surgical procedures. The method is
tested on the dVRK and includes marker-less surgical
tool tracking using an Extended Kalman Filter (EKF) that
couple vision and kinematics information to enhance the
robustness of VF application.

MATERIALS AND METHODS
The dVRK robot is composed of two Patient Side Manipu-
lators (PSMs) and an Endoscope Camera Manipulator
(ECM) commanded by two Master Tool Manipulators
(MTMs). The surgical scene can be seen by the surgeon
thanks to an endoscope, including a stereo camera with
5 mm baseline. Each PSM has a reference base frame,
F1 : ($1−G1H1I1), positioned at the PSM Remote Center
of Motion (RCM). The direct kinematics of the dVRK
allows computing the current pose of each gripper frame
F6 : ($6 − G6H6I6) respect to the corresponding base
frame. The tools tip frames FC : ($C−GC HC IC ) of each PSM
have their origins in the PSM tool tips. The method directly
uses laparoscopic images to track the surgical instrument.
A deep learning solution for instrument semantic binary
segmentation is employed. The system adopts the U-Net
modification proposed in [4], called TernausNet that is
trained using the dataset provided for MICCAI 2017
Endoscopic Vision Sub-Challenge: Robotic Instrument

(a) (b) (c) (d)

Fig. 1: Segmentation method: (a) Original frame; (b) Binary mask; (c)
Point identification in the image plane; (d) Reference frame definition.

Segmentation. The tool tip position on the image plane
is computed from the binary mask, reducing the search
area range re-projecting the tip kinematic position on the
image plane. Then, the 3D position of the PSM2 tip,
expressed in the camera frame F2 , is reconstructed by
using a triangulation method with direct linear transform.
The tool orientation is computed solving PnP problem,
which allows computing the orientation of the object from
a set of = correspondences between 3D points and their
2D projections. For the estimation and tracking of the
instrument pose, the Extended Kalman Filter (EKF) is
used, combining visual information from the endoscope
with the robot kinematics. The prediction step provides a
preliminary estimation of the instrument pose through the
linear and angular velocities of the gripper provided by the
manipulator kinematics. Then, the vision-based estimated
pose is used in the filter correction step. The filter provides
an estimate of the tool tip pose ' = [ pC , qC ]) , being pC
the true tool position, and qC = [[C , & C ]) its quaternion-
based true orientation in the base frame F1 . The process
dynamics for the state vector ' and the measurement model
are given by: 

¤pC = v6 + Y
(
86

)
r6C + n?

¤qC =
1
2



(
86

)
qC + n@

y = ' + m

(1)

where [v6,86]) are the linear and angular velocity of the
gripper frame, Y(·) is the skew-symmetric operator, r6C is
the position vector of the tool tip respect to the gripper,
n =

[
n? , n@

]) ∼ N (0, T) and m ∼ N (0,S) are the
process and measurement noise respectively and


 (8) =
[
0 −8)
8 Y (8)

]
. (2)

Then, the control and measurement matrices used in the
EKF implementation are easily computed:

L =

[
Y

(
86

)
U3

U3 Y
(
86

) ] ; N =

[
O3 U3
U3 O3

]
. (3)

The collision avoidance between the two tools is ensured
by the application of a FRVF. To this purpose, the VF is
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Fig. 2: First evaluation experiment. Duration: 20 seconds. Time histories
of: (Blue) Distance between surgical tools; (Red) Related estimated force
norm.

defined as the swept surface along one of the tool axis.
The VF has a cylindrical shape with a radius which is
double the tool radius. The minimum distance between the
PSM tool tip position x and the cylindrical FRVF of the
other tool corresponds to the length of the line segment
which joins perpendicularly the point to the axis minus the
radius of the cylinder. A constraint enforcement method is
defined, consisting in the application of a spring-damper
like force:

f E 5 (x̃, ¤̃x) = −QE 5 x̃ − JE 5
¤̃x (4)

where x̃ = x3 − x is the displacement between the point
x3 , belonging to the constraint geometry having minimum
distance from x. The matrices QE 5 and JE 5 are properly
designed diagonal and positive definite. The external force
is not directly measurable, it is estimated by resorting
to a non-linear dynamic observer [2]. Finally, the force
imposed by the Virtual Fixture is mapped on the MTM, that
is controlled through an impedance controller, to generate
the force cues.

RESULTS
The collision avoidance strategy is evaluated in two differ-
ent tasks. During the first evaluation test, the PSM1 tool is
fixed and the PSM2 is moved by the user in teleoperation
mode towards PSM1. Figure 2 shows the distance between
the two surgical tools, computed considering the proposed
tracking method, and the related repulsive haptic force
norm rendered to the user through the master side (MTM)
during the task. The maximum reached force is 3.2 N.
The second evaluation test consists in a human subject
study to show significant differences in performance caused
by the introduction of force feedback. The study involves
12 subjects divided into two groups, 6 experienced and
6 novice surgeons, based on self-evaluation about their
experience in the use of daVinci Robotic system for
minimally invasive surgical procedures. During each test,
the subject keeps the PSM1 centered in the middle of
a circle with a diameter of 20 mm. Meanwhile, the
PSM2 has to follow the circular path for 270◦ from a
definite starting point. In the first experiment, the subjects
perform the test 5 times moving the surgical tool in free

TABLE I: Maximum force and t-test results on minimum distance for
novice and expert users. The result of the test is 1 if the test rejects the
null hypothesis at the 5% significance level, and 0 otherwise.

Novice test p �" [N] Expert test p �" [N]
1 1 0.0044 2.4416 1 0 0.1352 3.4527
2 1 0.0127 3.0749 2 0 0.0856 2.8175
3 1 0.0030 3.3411 3 0 0.8286 3.5239
4 1 0.0219 2.8188 4 0 0.8757 2.6180
5 1 0.0206 3.9998 5 0 0.1140 3.0035
6 1 0.0012 3.4170 6 0 1 2.8800

motion and 5 times with the proposed collision avoidance
constraint applied. The minimum distance between the
tools is considered as performance parameter and it is
computed using the proposed tracking method, in the VF
constraint test the maximum force felt during the task is
also computed. To demonstrate the statistical relevance
of the results, a comparison is made between the mean
values of minimum distance, through a statistical unpaired
t-test, with a significance level U = 0.05. As presented in
Table I, the test shows statistically significant differences
between the means for all subject in the novice group and
an increase in the minimum distance values of ∼ 10% in
collision tests with respect to free-hand tests.

CONCLUSIONS AND DISCUSSION
This paper introduces a method based on haptic guidance
and virtual fixtures that allows avoiding surgical tools col-
lision in MIRS. A marker-less algorithm allows estimating
the PSM position and orientation, using kinematic and
visual information. The PSM estimated pose is used to
generate a FRVF, that aims to avoid collision between
the two instruments through a repulsive force felt at the
MTM during the surgical task execution. The proposed
strategies are evaluated through multiple experiments on
dVRK, showing good results in improving novice surgeon’s
performance. Therefore, the method can be considered
effective both in a training stage of novice surgeon, as
well as when the level of expertise increases. The goal
for future works is to improve the accuracy of the tool
pose estimation. For this purpose, more advanced methods
for hand-eye calibration and 3D reconstruction will be
considered. Moreover, the application of the method can be
extended to the collision avoidance of both PSMs and the
ECM, when automatic movement of the ECM is imposed.
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INTRODUCTION 
In modern society, a great number of people suffer from 
spinal diseases, such as degenerative spine diseases 
(DSD). The incidence of DSD is about 3.63% of world 
population, affecting 266 million individuals. Currently, 
advanced medical imaging has provided high resolution 
medical images. However, ionizing radiation of CT and 
high cost of MRI limit their clinical applications. 
Ultrasound (US) is capable of detecting bone through soft 
tissue and tracking bone kinematics [1], which becomes 
a good alternative to visualize the anatomy of the spine. 
It provides an affordable and non-ionizing imaging 
modality. However, disease diagnosis with 2D US 
images is time consuming and skill-intensive.  
To interpret US images, the real-time 3D reconstructed 
spine model can thus reduce the mental effort for 
clinicians. To reconstruct a 3D spine model, the contours 
of vertebrae need to be segmented from US images. 
Traditional image segmentation algorithms have already 
achieved good results with an average accuracy of less 
than 0.3 mm. However, the computation time is about 4.1 
seconds for one image [2]. Recently, advanced deep 
learning networks have been applied in medical 
ultrasound imaging processing. The U-Net is an efficient 
network to segment ultrasound images [3]. In this study, 
we applied the U-Net with several modifications for real-
time US segmentation. The goal of this study is to 
improve pre-operative DSD diagnosis so that the 
proposed accurate 3D US image reconstruction 
framework could be applied for intraoperative surgery. 
This framework can also be coupled with automatic 
robotic ultrasound imaging system in the future. 
The following section presents materials and methods of 
the proposed US scanning system. Section Results 
addresses the experiments performances and quantitative 
results. Finally, results are discussed, and conclusions are 
drawn. 

MATERIALS AND METHODS 
A vertebra model was generated from preoperative CT 
scanning. Then, it was manufactured by 3D printing and 
immersed in a water tank for image acquisition. To 
acquire US image data associated with 3D positioning 
information, the medical ultrasound system (SonoSite, 
USA) was equipped with a video capture card (Epiphan 
Systems Inc. Palo Alto, Canada) and an electromagnetic 
tracking system (NDI Aurora, Canada). In addition, a PC 
workstation with Nvidia P2000 GPU was employed for 
training deep learning network and visualization.  

Figure 1 illustrated the workflow to reconstruct the spine 
model. The US images and spatial information were 
collected simultaneously with ROS. Then the obtained 
images were automatically segmented by U-Net and 
published as ROS topic. Combining with Aurora ROS 
topic, information was sent to reconstruction algorithm.  

To capture a full view of the vertebra, US probe was held 
on the top of the vertebra and kept perpendicularly to the 
vertebra. 90 images were collected by video capture card 
and masked manually. Subsequently, these images were 
augmented to generate more datasets by mirroring on 
vertical axis and shifting in horizontal direction within 
0.05 mm separately. Eventually, the model was trained 
with 360 augmentation images, in which 36 images were 
used as validation datasets. The implementation of U-Net 
consisted of five layers, and the size of input images was 
256*256. The network was trained for 50 epochs with a 
learning rate of 1e-4. The U-Net based bone 
segmentation algorithm could predict the segmentation 
outputs from raw images without additional pre-
processing. Then, predicted images were evaluated using 
recall and precision segmentation metrics. Furthermore, 
the dice similarity coefficient (DSC) was also calculated 
by comparing with manually labelled images.  
For freehand tracking, an EM sensor was used to provide 
translation and rotation information 𝑇!→#. After attaching 
the EM sensor on US probe, spatial calibration and 
temporal calibration were performed. The purpose of the 
spatial calibration was to establish the transformation 
between sensor coordinate and US image coordinate 𝑇$→! 
of transducer surface. The crosswire phantom was 
applied for spatial calibration with the Least Square 
method [4]. Furthermore, temporal calibration was 
implemented to eliminate the sampling latency time 
between EM data and US image data. A synchronizing 
filter was used within ROS framework by comparing 
timestamps of incoming messages to output messages in 
one callback.  
Once data were calibrated, the pixels in 2D US images 
were transformed into 3D volume in the global 
coordinate system. In reconstruction process, the 

Figure. 1. Workflow for the reconstruction system 
 

Proceedings of the 10th Conference on 

New Technologies for Computer/Robot Assisted Surgery (CRAS 2020)

48



segmented contour pixel (𝑢% , 𝑢& ) was converted into 
point cloud (𝑥, 𝑦, 𝑧 ) in the global coordinate, where 
𝑇!→#	 ∙ 𝑇$→!  is the transformation matrix from image 
coordinates to sensor coordinate in Eq. (1). 

(
𝑥
𝑦
𝑧
1
* = 	𝑇!→# ∙ 𝑇$→! (

𝑢%
𝑢&
0
1
* (1) 

Subsequently, the calibrated image sequences in 12Hz 
and corresponding positions in 50Hz were transmitted 
simultaneously to reconstruction algorithm to form 3D 
volume. In previous research, the interpolation method 
was widely developed to render volume [5]. But this 
paper focused on geometry features of the interest region 
of spine. Thus, to visualize the features, PointCloud 
Library (https://pointclouds.org/) based program was 
developed. The collected point clouds had the potential 
to have meshes as smooth surface for future 
requirements.   

RESULTS 
The numerical evaluation results of U-Net segmentation 
are shown in Table 1 compared with ground truth 
obtained from manual segmentation. The inference time 
for 30 US images is about 5 seconds. 
Table. 1. Validation of U-Net image segmentation 

Figure 2 gives an example of the predicted results of the 
vertebra spinous process generated by the trained model. 
Figure 2.c shows the reconstructed point clouds of 3D 
spine model contains all significant geometry features 
such as spinous process and articular process, which 
matches with 3D printed vertebra model in Figure 2.d. 
This result can visually show the features of the spine. 
The entire framework could operate at 5Hz to generate 
an updated point cloud.   

CONCLUSION AND DISCUSSION 
In this article, a workflow was presented to reconstruct 
3D spine shape model for medical purposes, mainly for 
pre-operative spine disease diagnosis. US images and 
position data were efficiently coupled in ROS and 
processed by the proposed framework. Moreover, the 
contour of spinous and articular process were 
successfully segmented and reconstructed with spatial 
information.  U-Net network is capable of efficiently and 
accurately segmenting ultrasound images. Except pre-
operative applications, such framework also has a great 
potential to be applied in intraoperative surgery to 
generate 3D structure of the anatomy within a short time. 
Finally, the outcome can be illustrated in 3D by 
visualization toolkit. 
However, a limit of this study is the small amount of 
training data. Therefore, the performance of U-Net still 
has potential to be improved, when the larger training 
data is available. Besides, 3D printing material can 
generate a strong reflection of ultrasound wave, resulting 
in bony shadow in B-mode images. To mimic the actual 
human bone, future research should use bionic material 
phantom or animal specimen. In the future, robot arms 
can be utilized in this framework for surgical application. 
Highly automatic robotic control can reduce the work 
burden and obtain the optimal probe position rather than 
freehand scanning. Besides, IMU tracking is another 
promising tracking solution to get rid of magnetic field. 
Finally, future work should also focus on developing 
deep learning network for spine shape model 
reconstruction. 
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Recall Precision DSC 
Experiment 1 0.90 0.91 0.91 
Experiment 2 0.94 0.95 0.94 
Experiment 3 0.93 0.93 0.93 
Experiment 4 0.86 0.91 0.83 
Experiment 5 0.97 0.99 0.95 

Figure. 2. Example of U-Net US segmentations. a) Raw US 
image; b) U-Net segmented image; c) Reconstruction model; d) 
3D printed vertebra model. 
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INTRODUCTION

Nowadays the main research interests in the field of
Robotic Minimally Invasive Surgery (R-MIS) are related
to robots’ autonomy [1]. Techniques like trajectory plan-
ning, collision avoidance [2, 3], decision making and
scene understanding [4] require technical advances in or-
der to be applied to such an environment. In this paper,
we propose a deterministic supervisory controller for a
surgical semi-autonomous robotic platform.
The proposed method uses a three-level Hierarchical

Finite State Machine (HFSM) to define all the possible
behaviours of the autonomous system. The transitions of
the HFSM are triggered by the Observers, a set of func-
tions fed with the state of the system (robot kinematics,
anatomical structures, etc.) that output a logical descrip-
tion of the surgery state. We tested the supervisory con-
troller performing the “bladder neck incision” phase of a
Radical Prostatectomy (RARP) procedure.

SUPERVISORY CONTROLLER

We propose a hierarchical HFSM with three layers de-
fined as: (1) Procedure, which encompasses a complete
surgical procedure and is composed of a set of surgical
phases and transitions between them; (2) Phase, which
defines a complex of surgical actions with a defined in-
tention or objective having a clear beginning and end; (3)
Action, which defines a simple tool task with a specific
objective and defined as a set of surgemes and their inter-
actions, i.e. the atomic actions within a surgery that can-
not be decomposed further. The medical knowledge used
to define theHFSM is provided by surgeon interviews and
literature review. The control and supervision of the pro-
cedure, phases and actions is conducted bymeans of finite
state machines (FSM). This methodology enables a strict
control of the status of each phase, action and surgeme ex-
ecuted by each robotic tool during a procedure. The pro-
cedure is modelled as a FSM, where each state represents
a phase. Following with the decomposition, each phase
FSM contains an action FSM whose states are surgemes
representing atomic actions performed by a robot or a sur-
gical tool.
The supervisory controller is in charge of providing

commands to the robot controller and to trigger the transi-
tions of the HFSM. Three sub-modules compose the con-
troller: Supervisor uses the knowledge of the surgical pro-

s1 s2 s3

s4

t1

t2

t3

r1, r2

r1, r2

Figure 1: The finite state machine of the first action (approach
catheter) of the bladder neck incision. Labels si, ri and ti are
defined in Table 1.

s5 s6

s7 s8 s9

s10
t4

t5r2

t6 t7

r3

t5

Figure 2: The finite state machine of the second action (grasp
catheter) of the bladder neck incision. Labels si, ri and ti are
defined in Table 1.

cedure to choose the atomic movement (i.e. surgeme);
Observer converts the information generated by the per-
ception of the environment to the trigger events encoded
into the surgical procedure; and Dispatcher is in charge
of dispatching the surgeme execution to the lower level
robot controller (i.e. the trajectory reconfiguration and
obstacle avoidance modules).

EXPERIMENTAL SETUP

The experimental setup consists of a da Vinci surgi-
cal robot controlled through the da Vinci Research Kit
(dVRK), a SARAS robotic arm [1] acting as the assis-
tant surgeon and an Intel RealSense d435 RGB-D camera
mounted on the da Vinci camera arm (ECM).
The HFSM used in the experiment is composed of one

phase FSM and two action FSMs shown in Fig. 1 (wait
until the catheter is detected before moving SARAS arm
towards it) and Fig. 2 (grasping and pulling movements).
A detailed description of the surgemes and the transition
triggers are presented in Table 1.
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Label State description
s1 Move to safe position
s2 Wait until catheter is recognised
s3 Follow the catheter position
s4 Approach the grasping position
s5 Idle, wait in the grasping position
s6 Open the grasper
s7 Reach the grasping position
s8 Close the grasper
s9 Pull up the grasper
s10 Open the grasper

Label Trigger description
t1 Robot tool is in safe position
t2 Catheter has been recognised
t3 Catheter has been pulled-up
t4 Robot tool is ready to start grasping
t5 Robot tool is open
t6 Catheter is on the grasping position
t7 Robot tool is close
r1 Catheter tracking is lost
r2 Reset command by surgeon
r3 Target position not reachable

Table 1: Description of the surgemes and triggers generated by the Observer.

(a) (b)

(c) (d)

Figure 3: The automatic catheter grasping experimental valida-
tion. a) the initial position of the autonomous system, b) the arm
starts moving to the catheter, c) the arm approaches the grasping
point, d) once the catheter is grasped the main surgeon releases
it.

The detection and tracking of the catheter is done us-
ing the OpenCV library. To detect the catheter we use
a template matching technique, the resulting features are
then tracked frame by frame using Lucas-Kanade optical
flow. The position and the velocity of the catheter are
projected in 3D (using the depth map of the RGBD cam-
era) providing to the supervisory controller the odometry
of the grasping point. The proposed tracking method is
further improved by restricting the search area around the
da Vinci arm during the catheter extraction.

RESULTS

The proposed method, as shown in Fig. 3, is able
to accomplish the catheter detection and grasping au-
tonomously. Fig. 3a shows the robot in the initial posi-
tion, corresponding to the state s1 of the FSM of Fig. 1.
When the vision module recognises the catheter, the
SARAS tool reaches the approach grasping position (s4)
provided by the features in the 3D system space, as shown
in Fig. 3b. The surgeon extracts the catheter with the
da Vinci arm (PSM) and pulls it up to the desired posi-

tion, triggering the transition from state s5 and s6. There-
fore, the SARAS tool starts moving towards the grasping
point and can proceed with the grasping action shown in
Fig. 3c. After that, the SARAS arm pulls the catheter au-
tonomously as shown in Fig. 3d. Pictures in Fig. 3 re-
fer to the full video available at https://youtu.be/
mTAWF56iEek.

CONCLUSION

In this work, we proposed a supervisory controller for
semi-autonomous surgical robots. The controller has
been tested with realistic phantom on a specific phase of a
radical prostatectomy. Further improvements of the pro-
posedmethod are: the integration of machine learning ap-
proaches to provide phases and actions segmentation as
input to the observer, and the extensions to the full RARP.
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INTRODUCTION 
Intrauterine fetal surgery allows a minimally invasive 
surgery (FMIS) approach to the treatment of congenital 
defects. This surgical technique allows the correction of 
the Twin-to-Twin Transfusion Syndrome (TTTS) [1]. 
TTTS is a severe complication in monochorionic twins’ 
pregnancies that occurs when there is communication 
(anastomoses) between the fetuses’ blood systems, which 
leads to cardiovascular disturbances and results in their 
death in 90% of cases. A minimally invasive approach is 
less harmful and allows the preservation of the tissues of 
the amniotic sac. Fetoscopic Laser Photocoagulation 
(FLP) is a MIS intervention to ablate all the intertwin 
anastomoses to make independent the twins’ vascular 
systems from each other [2]. 
A single master single slave teleoperation platform was 
developed to assist the surgeon during FLP, Fig. 1. The 
master is composed of a 6DoF haptic device and an 
interactive user interface containing fetoscopic view, 
interactive navigation map, etc. The slave is composed of 
6DoF robot holding a fetoscope, an active trocar insertion 
depth control and an automated coagulation laser control 
system. The platform has been tested by 14 surgeons with 
different fetoscopic surgical experience, obtaining the 
face validity. Two main issues have been detected. First, 
the need of a redundant robot to overcome the kinematic 
restrictions imposed by the Remote Center of Motion 
(RCM) and the workspace placement, defined by the 
placenta position. Second, the need of active human-
robot interaction during pre and post-operative phases 

(insertion and extraction of the fetoscope) and during 
surgery to enable a safe shared workspace between 
medical staff (e.g. auxiliary surgeon with an echographer 
probe) and robot. 
Following the generalized framework for control of 
redundant manipulators in RMIS proposed in [3], this 
paper proposes a multi-task control strategy exploiting 
redundancy to improve dexterity and reachability as well 
as enable human-robot interaction to deal with human-
robot collisions and co-manipulation while performing 
the surgical task. This work is based on a 7 DoF KUKA 
LWR 4, a redundant and collaborative robot. 

MATERIALS AND METHODS 
FLP surgery can be described with a Finite State Machine 
(FSM) with five main states: System Set-up (SS), 
anastomoses localization (AL), coagulation (AC), review 
(AR) and tool removal (TR). The developed multi-task 
control modulates the behavior of the system according 
to the specific requirements of each state. A hierarchical 
multi-layer control ensures the control of the tool tip pose 
(main task) guided by co-manipulation (SS and TR) or 
telemanipulation (AL, AC and AR). Three secondary 
tasks are active when necessary: dexterity optimization 
using redundancy (all states), joint compliance (all states) 
and obstacle avoidance (AL, AC and AR). Fig. 2 shows 
the multi-layer control schema for the different phases. 
Two robot guidance modes are proposed: 
telemanipulation and co-manipulation.  
Robot redundancy is obtained adding an extra joint (q3) 
to the kinematic chain. Redundancy allows the use of the 

Figure 1. Schematic representation of the robot-assisted TTTS surgery-oriented teleoperation platform 

Proceedings of the 10th Conference on 

New Technologies for Computer/Robot Assisted Surgery (CRAS 2020)

52



Jacobian’s null-space projection, where the proposed 
subtasks can be performed without modifying the main 
task (tool position). The subtasks performed in null-space 
have a strict priority hierarchy. From highest to lowest: 
joint compliance, obstacle-avoidance and dexterity 
optimization. 
Joint compliance control allows safe human-robot 
interaction. This admittance-based control allows the 
surgeon to free occupancy space (passive behavior) and 
react safely to unintended collisions (active behavior) by 
changing the stiffness parameter. The obstacle-avoidance 
control defines lateral boundaries that represent the 
allowed lateral occupancy space of the robot. The lateral 
boundaries are modelled as masses attached to a spring-
damper system, affected by repulsive forces. The medical 
staff is treated as obstacles that generate a repulsive force 
to the boundaries based on the distance. The joint 
configuration of the robot must remain inside the lateral 
bounds. Finally, as redundancy offers infinite 
configurations for a given tool pose, it can be exploited 
to increase the reachability workspace and maximize 
dexterity, within the joint limits defined by the higher 
priority subtasks. The proposed dexterity optimization 
method dynamically finds the joint configuration that 
gives the maximum manipulability from a set of 
redundant configurations around the current joint 
position 𝑞𝑞3(𝑡𝑡) ∈ [𝑞𝑞3(𝑡𝑡 − 1) − 𝛥𝛥𝛥𝛥𝛥𝛥𝑥𝑥, 𝑞𝑞3(𝑡𝑡 − 1) + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥], where 
Δmax is the maximum allowed joint movement at each 
control step. To maintain a coherence in the movement 
around the workspace, q3 upper and lower boundaries are 
set proportional to the radial distance to the RCM in the 
XY plane. This policy forces the robot to decrease its q3 
value near the centre, allowing it to escape local maxima 
that would compromise the robot’s performance. 

RESULTS 
Several scenarios have been used to test the proposed 
control, simulating different realistic placenta positions: 
posterior and lateral. The workspace of the robot is 
constrained by the RCM, which defines a cone-shape 
workspace. In posterior placenta the tool is inserted 
(origin of the tool orientation) in vertical whereas lateral 
placenta forces the tool to enter with some inclination. 
The joint compliance control has been tested in 
simulation with different stiffness parameters, where the 
robot dynamics behave as expected upon an external 
force. The obstacle-avoidance control has been tested in 
simulation with an obstacle trajectory of approaching and 
retreating. The robot’s lateral occupancy space is reduced 
when the obstacle is close. A performed reachability 
workspace analysis proved that in posterior placenta the 
reachability (points reached inside the workspace) 
increases a 30% using redundancy, but there is not a 
significant volume increase (<5%). In the lateral 
placenta, the reachability increases up to an 80% and the 
volume up to 70%. The dexterity optimization algorithm 
is tested for a set of randomized paths. The results show 
that the manipulability increases up to 600% in some 
regions with respect to the results of the same test with a 
6 DoF robot, whereas isotropy increases up to 80%. Best 

results are obtained in the vicinity of a singularity where 
the use of q3 avoids falling into a singularity. None of the 
subtasks performed in the null space compromised the 
main task, which in all tests reached all destination points 
with an error less that 1 mm. 

Figure 2. Multi-Layer control schema 

CONCLUSION AND DISCUSSION 
The inclusion of a redundant and collaborative robot in 
the FMIS teleoperation platform has demonstrated a 
noticeable improvement of the system in several aspects. 
The hierarchical multi-task control strategy enables an 
adaptive system behavior depending on the specific 
requirements of each phase of the surgical procedure. 
The main task ensures the correct fetoscope position 
using any of the two tool guidance modes: co-
manipulation and teleoperation. The secondary tasks are 
applied depending on the desired robot behavior. 
Redundancy increases the reachable workspace, 
optimizes dexterity (local optimization) and singularity 
avoidance, ensuring the applicability of the system 
independently of the placenta position. Dexterity 
improvement eliminates singularities inside the 
workspace. In addition to redundancy the collaborative 
capabilities offer benefits in two aspects. First, enables 
the system to be implemented in real surgical 
environments, where the robot occupancy volume is 
shared with medical staff (e.g. the echographer). The 
ability to measure the forces exerted on the arm enables 
the possibility to change its position to free up working 
space while the main task (fetoscope position) is 
accomplished. Second, improves the set-up and tool 
removal phases, reducing the surgery room occupancy 
time. Finally, the obstacle avoidance and compliant 
control ensure the safety of the medical staff during 
surgery. The new multi-task control schema jointly with 
the use of Kuka LWR 4 will speedup the process to start 
tests with animal models.  
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INTRODUCTION 

Learning-based technologies and, in particular, deep 

learning, have revolutionised the way researchers and 

engineers approach surgery and computer assisted 

interventions, avoiding time-consuming and task-

specific solutions to existing tasks and introducing new 

technologies, such as virtual and augmented realities. 

However, this comes at the expense of a large number of 

training data, that is the fundamental requirement even 

for basic tasks, e.g. surgical tool segmentation or pose 

estimation. A possible solution to this issue could be to 

generate new data starting from a given dataset, that, as a 

matter of facts, should lead to an infinite number of data. 

In particular, Generative Adversarial Networks [3] 

(GANs) achieved state of the art performances for image 

generation, being able to create realistic textures and 

objects. However, GANs suffer from very unstable 

training and usually fail in reproducing realistic image 

content. Many of these issues have been tackled with the 

introduction of cycle consistency Generative Adversarial 

Network (cycle-GAN) [2]. In their work [2], Zhu et al. 

proposed a novel GAN composed by two generators and 

two discriminators that connect two different but 

correlated set of images (e.g. night to day light pictures, 

horse to zebra images, simulated to real surgical tool): 

one generator takes an image from one set and transforms 

it into an image from the other set, while the other 

generator performs the opposite transformation. This 

methodology leads to a more stable training thanks to 

cycle consistency and allows an efficient transformation 

between two set of images without the need for labels or 

paired samples. In this extended abstract we propose a 

novel framework for labelled surgical dataset generation: 

in order to produce realistic data from simulation images, 

our method takes images from a virtual simulator (where 

segmentation ground truth is automatically provided) and 

from a real ex-vivo dataset and uses a cycle-GAN to learn 

the style transformation between them. Once style 

transfer is applied on simulation images, they are blended 

on a real surgical background to finally produce complete 

synthetic frames. The produced dataset is evaluated for 

tool segmentation, showing that state of the art 

performances can be obtained by training a segmentation 

model only on synthetic data. 

MATERIALS AND METHODS 

The proposed data generation methodology is divided in 

two successive steps. First, we process images acquired 

using a daVinci simulator [1] on CoppeliaSim1 (Fig.1.a) 

in order to produce real-looking surgical tools (Fig.1.b). 

The processed images are then blended on a surgical 

background to finally produce complete synthetic 

surgical frames (Fig.1.c). In this section we first describe 

our training data, the employed cycle-GAN architecture 

and the tool-blending procedure and finally we  present 

our experimental protocol. 

Figure. 1. Main steps of the proposed procedure. Starting from 

images containing simulated surgical tools (a), a cycle-GAN 

based style transfer method is applied to give the tools real 

appearance (b). Finally, the produced tools are blended on a 

surgical background (c). 

Transfer learning and tool blending 

Real set: The proposed cycle-GAN id trained to transfer 

the real-looking style from ex-vivo frames, i.e. the real 

set, to simulation images (simulation set). 

Starting from raw frames, we produced our real set by 

extracting tools from the background using segmentation 

labels. Such separation procedure is necessary since we 

experimentally observed that applying style transfer 

directly on full images leads to an unstable training and 

poor visual results. 

Simulation set: The simulation set was generated using 

a daVinci virtual simulator [1] that reproduces both tool 

geometry and kinematic and can acquire images with a 

virtual camera. 

Network architecture and training strategies: Cycle-

GANs are composed by two generators (set1 to set2 

transform and vice versa) and two discriminators. The 

architectures of generators and discriminators in our 

work are based on [2]. Generators have an encoder-

decoder structure: two initial down sampling blocks (2D 

convolution + Instance normalization + Relu activation) 

reduce the image width and length by 4 and increase the 

number of channels to 256. The result is then processed 

into 9 successive residual blocks and the image is finally 

up sampled to the initial shape and number of channels. 

The discriminators architecture is composed by four 

down sampling blocks that reduces the input dimensions 

by 16 and increase the number of channels to 512. The 

result is finally processed using a 2D convolution to 

generate a 64x64 grayscale image. 
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Figure. 2. Samples from the generated synthetic dataset. 

In order to stabilize training, we applied spectral 

normalization before each convolution, we applied 

historical averaging during the discriminators training 

and we set lrD = 4lrG, where lrD and lrG are the 

discriminator and generator learning rates respectively. 

The loss function employed to train our models is the 

same as [2] and we chose Adam with lrG=0.0002, β1=0.9 

and β2=0.999 as our optimizer. 

Tool blending: Once style transfer has been applied on 

simulation images (Fig.1.b), we can exploit simulation 

tool masks to properly paste the tool on a surgical 

background (Fig.1.c). This assumes that, during style 

transfer, the content of the image has not been modified 

and so that the simulated and the transformed images 

share the same segmentation mask. The final image is 

produced following the formula:   Ifinal = M*Itran + (1 – 

M)*Ibackground, where Itran is the transformed image, M is 

the relative binary segmentation mask,  Ibackground is the 

surgical background image and ‘*’ and ‘+’ are per-pixel 

multiplication and sum respectively. 

Experimental Protocol 

To train our cycle-GAN, we produced the real set starting 

from 14 ex-vivo surgical videos [6] for a total amount of 

660 frames. Then we created the simulation set by 

producing other 660 simulation images using our daVinci 

simulator. 

With the trained cycle-GAN, we generated 3000 

synthetic frames using 10 different surgical backgrounds 

from [6]. Images have dimension 512x512x3. A sample 

of the produced synthetic frames is shown in Fig.2. 

In order to quantitatively validate the proposed data 

generation method, we trained two models based on the 

same architecture, the first on synthetic data only and the 

second on real data [6] respectively. The performances of 

these two models were then tested on four real test videos 

provided by [6]. We chose RASNet [4] as our state of the 

art tool segmentation architecture. 

Segmentation performances were evaluated in terms of 

median Intersection Over Union (IoU) score: 

 𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁

where TP is the number of pixels correctly classified as 

tool pixels while FP and FN are the number of pixels 

misclassified as tool and background respectively. 

RESULTS 

Results obtained by RASNet trained on real and synthetic 

data are shown in Table 1. The model trained on 

transformed data showed the best performances on the 

first three test videos, with an improvement range from 

4.30% (Video 3) to 10.85% (Video 1), w.r.t. the one 

trained on real data. Even considering that the real data 

model performed better than the one trained on our 

synthetic dataset on Video 4, both the models obtained 

IoU scores above 90%, with less than 3% difference. 

CONCLUSION AND DISCUSSION 

The obtained results suggest that our cycle-GAN was 

able to properly select and transfer features from real to 

simulation tools in order to produce high quality 

synthetic data. This is shown particularly by the 

performances obtained on Video 1, 2 and 3, where the 

model trained on synthetic frames outperformed the one 

trained on real ex-vivo images. The major limitation of 

this work is the need for ground truth segmentation 

masks to separate tools and background to produce the 

real set for our cycle-GAN training. The development of 

a complete unsupervised methodology for surgical data 

generation could be a natural extension of this work, 

allowing the generation of huge datasets with little 

human effort. Another future direction for our work could 

be to produce frames that could better represent the real 

surgical scenario, i.e. with blood on the tools and 

projected shadows on the background. 

Real data Synthetic data 

Video 1 79.25 90.1 

Video 2 78.44 87.18 

Video 3 84.56 88.86 

Video 4 95.09 92.39 

Table. 1. Results achieved on 4 test videos [6] by two RASNets 

trained on real data and synthetic data. Performances are 

evaluated in terms of median IoU score (%). 
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Towards the Development and Evaluation of a Handle Prototype for a
Handheld Robotic Neurosurgical Instrument

Emmanouil Dimitrakakis1, George Dwyer1, Lukas Lindenroth1, Holly Aylmore2, Neil L. Dorward3,
Hani J. Marcus3, and Danail Stoyanov1

I. INTRODUCTION

The Expanded Endoscopic Endonasal Approach (EEEA)
is a Minimally Invasive Surgery (MIS) technique that is
performed through the sinus and aims at the removal of
lesions from a number of areas at the base of the brain [1].
Although a promising alternative to transcranial approaches
that require craniotomies and brain retraction, the EEEA
comes with its limitations and 74% of surgeons identified
the limited surgical manipulation that the standard non-
articulated instruments offer as the biggest challenge [2].
This procedure could potentially be improved using robotic
instrumentation that provides articulation at the tip.

The purpose of this preliminary study is to create an er-
gonomic handle for a handheld surgical robotic tool intended
for the EEEA. A handheld tool was chosen rather than a
tele-operated robotic platform, due to its compactness and
its ability for easier integration into the surgical workflow.
In previous work, a 3 degrees-of-freedom articulated robotic
end-effector for this tool was developed, with the purpose
of pairing it with the ergonomic handle in future work.
This paper will present the design and development of
an ergonomic handle for a robotic neurosurgical tool. The
guidelines for developing ergonomic handles will be outlined
followed by our proposed handle design and simulation
environment.

II. MATERIALS AND METHODS

A. Ergonomic guidelines

Long-term use of incorrectly designed tools can cause con-
ditions such as the carpal-tunnel syndrome and the hand-arm
vibration syndrome [3], meaning that appropriate ergonomic
tool design is essential. According to [4], it is difficult to
define a clear and universal consensus on specific compo-
nents or instructions that make a handle design ergonomic
and comfortable to use. Despite this difficulty, however,there
are still some characteristics that are found to be contributing
towards an ergonomic design. These instructions and sugges-
tions on ergonomic guidelines are summarized in table I.

B. Handle implementation

Following these instructions, we developed a handle de-
sign that was inspired by most commercially available hand-

1Wellcome/EPSRC Centre for Surgical and Interventional Sciences
(WEISS), University College London (UCL), London, UK

2University College London, London, UK
3National Hospital for Neurology and Neurosurgery, London, UK

e.dimitrakakis@ucl.ac.uk

TABLE I: Some of the ergonomic guidelines suggested from the
current literature.

Instructions towards an ergonomic handle design

The surgeon’s hand size should not hugely affect the design [5]

The handle type should be finger-operated [5]

The thumb actuates the robot joints (eg joystick or rotary switch) [6]

The index finger actuates the robot gripper (eg trigger) [6]

The tool geometry should include a large palmar grip surface [7]

The Handle - shaft angle should be 45o [7]

A partially opened hand should hold the instrument at rest [7]

held robotic tools that are used in surgery. It is finger-
operated, employing a thumb-controlled joystick that actu-
ates the robot joints, mainly its pitch and yaw rotations, and
an index finger-controlled standard trigger that actuates the
robot gripper. The roll motion is carried out by the surgeon’s
hand. It contains a large handle surface that provides the
surgeon with palmar grip and the handle-shaft angle is 45o.
To account for different hand sizes and to make sure that
the instrument at rest is maintained by a hand that is also
kept at rest, we introduced a ’rotating joystick body’ that
is modifiable and can be rotated into the position that each
surgeon feels more comfortable with. Figure 1 shows the
handle with its rotating body in 7 different discrete positions.

Fig. 1: Seven discrete joystick positions on a printed rotating-body
handle prototype.

The level/resting position of the hand is shown in Figure
2A. In Figure 2B, the thumb is shown in ’adduction’ (left)
and ’abduction’ (right). It is evident from this figure that the
resting position of the hand requires the thumb to be in an
’abduction’ position, not so close to the rest of the fingers.

If we were to place the joystick at the exact centre of
the handle, the thumb would be at an ’adduction’ position
and the surgeon would feel uncomfortable and easily tired.
By placing the joystick on a rotating body, the surgeon can
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Fig. 2: A. The hand at its resting position, and B. thumb adduction
(left), thumb abduction (right) [8].

rotate the joystick to the left if they are to use it with their
right hand and to the right, if they are to use it with their left
hand. The angle of rotation, namely the angle by which the
surgeon needs to rotate the joystick body to feel comfortable,
depends on the surgeon’s hand size.

In Figure 3 it is shown how this handle can cater to
different hand sizes and can be used independently of right-
or left-handedness. It is worth mentioning that in Figures 3.A
and 3.B the rotating body has been rotated by approximately
15o, whereas in Figures 3C. and 3.D by approximately 35o

Fig. 3: The handle held by A. a small left hand, B. a small right
hand, C. a large left hand, and D. a large right hand.

C. Simulator implementation

For the simulator, we decided to use CoppeliaSim (for-
merly V-REP), a versatile and powerful robot simulation
platform [9]. Objects inside the CoppeliaSim simulator are
controlled remotely by Robot Operating System (ROS) nodes
and other custom solutions. The simulation task we decided
to develop in this environment is a ring-transfer task, with
the developed handle controlling a surgical forceps. An
endoscope-resembling camera was also implemented inside
the simulation that is user-controlled through a 3D-printed
endoscope. Both the shafts of the developed handle and the
endoscope were physically constrained in space in accor-
dance to the EEEA workspace constraints.

To evaluate the efficacy and comfort of the device, we
performed the ring transfer task using the handle to move
the robotic end-effector, and using keyboard inputs to move
the robot shaft in space. This will be substituted by an optical
tracking system in the future that maps the surgeon’s handle
movements in 3D space to the simulation environment. All
six rings could be transferred from the one set of spikes to
the next, with comfort and ease. This, however, will be ex-
tensively tested in future work when a number of evaluation

and comparison tests will be carried out to investigate the
efficacy of the tool. A series of pictures of the simulated
task moving the first two of the six rings can be seen in
Figure 4.

Fig. 4: The ring transfer task inside the CoppeliaSim simulation
environment using the handle prototype.

III. CONCLUSION AND DISCUSSIONS

In this preliminary study we developed an ergonomic
handle prototype for a handheld robotic neurosurgical instru-
ment. Alongside the handle, a simulation in the CoppeliaSim
environment was developed to evaluate the prototype. The
end-goal of the study is to evaluate the efficacy of the handle,
before the implementation of the final robotic instrument
prototype. This is why as a continuation of this abstract, we
plan on developing additional handles with different design
strategies, and additional simulation tasks, and conduct a
clinician user-study where experts are going to decide which
handle design is the most appropriate for the EEEA.
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INTRODUCTION 
Medical robotics systems are widely used nowadays and 
gaining more and more attention from both research 
societies and surgeons, providing new solutions to 
different minimally invasive surgeries. Despite higher 
costs, hospitals are embracing the new technology for 
reasons like providing more dexterity than traditional 
laparoscopy and better ergonomics, which relieve the 
surgeon’s mental burden[1, 2]. Most of the designs of 
currently available medical robots consist of rigid parts 
not suitable for interventions such as flexible endoscopy. 
The tips of flexible endoscopes are usually actively 
steered by tendons while their bodies are  passively 
flexible and will bend with the surrounding lumen.  
The Bio-Inspired Technology group (BITE) at Delft 
University of Technology is designing new mechanical 
solutions that allow instruments to navigate through 
vulnerable anatomic surroundings and get to hard-to-
reach locations.  Inspired by nature, innovative soft 
robotic arms with varying numbers of steerable segments 
were designed and manufactured with 3D printing 
technology [3], allowing rapid manufacture and easy 
adjustment for different clinical needs. However, to build 
robotic actuators for these varying designs is time 
consuming, especially when a new design has to be 
changed according to the required number of degrees of 
freedom (DOF) that has to be controlled. Modular 
actuation has a strong advantage on addressing this issue 
as modular actuators can be easily duplicated and stacked 
for different DOF to make them suitable for new designs. 
Therefore, in this paper, a miniature soft robotic arm 
controlled by modularized actuation segments is 
proposed. These segments can work independently 
and/or together to steer the soft  robotic arm. This study 
aims to investigate whether the proposed design is able 
to steer a cable-driven soft robot and is suited for designs 
with different numbers of steerable segments (DOF). 

MATERIALS AND METHODS 
The proposed manipulator design is modular  with 
respect to the number of actuation segments in the soft 
robotic arm. These modularized actuation units 
correspond to the number of steerable segments required, 
each unit being able to steer one steerable segment. In 
each unit, we used four stepper motors (NEMA17, 
17HS4401) with drivers (DRV8825, AZDelivery) 

connecting to one microcontroller (ATmega328P, 
Arduino UNO) with shield circuit (Arduino CNC shield 
v3). Mechanical supports and parts are identical in each 
segment. The stepper motors connect to the soft robotic 
arm by tendons and are arrayed with offset angles in 
order to minimize the space required for each motor. 
Microcontrollers in different segments are connected via 
I2C, the first leading microcontroller being the master 
and the others serving as slaves. To prove the concept, a 
soft robotic arm with two steerable segments (4 DOFs) is 
used. The 1st  to 32nd microsteppings are used to increase 
resolution of the movement of the tip. A manipulator with 
two modularized actuation segments is built and 
employed with two control strategies. The first strategy 
consists of simply using two independent joysticks to 
steer two deflection angles of their corresponding 
segments. The second strategy is the follow-leader-
control, meaning the first leading segment is remotely 
controlled by a joystick. When the deflection of the first 
tip is being determined by the user, the following part will 
then move the same way as the leading one by a 
feedforward control strategy.  

RESULTS 
The 4 DOF soft robotic arm manipulator that was built is 
shown in Figure 1. The dimensions of the modularized 
actuation part are 300x200x100mm. Two modules were 
assembled and connected to the soft robotic arm, which 
possesses 2 steerable segments with an outer diameter of 
8 mm and a total length of 85 mm. The manipulator can 
successfully control the movement of each segment by 
two joy sticks as shown in Figure 2.   

 

Figure. 1. The left figure shows the assembly of two 
modularized actuation segments together with a 4 DOF soft 
robotic arm. The right figure shows the actuation elements 
in one actuation module. 
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Figure. 2.  Front view from the manipulator showing 
robotic arm being driven by two-joystick. 

Figure. 3. Side view from the manipulator showing the 
maximum deflection it can achieve. 

The resolution of tip movement and the maximum 
deflection of both steerable segments together are 0.38° 
and 159.2°, respectively, as measured with a digital 
camera and image processing software. In Figure 4(A)-
(F), the follow-the-leader strategy is shown from the top 
view. The second segment can approximately follow the 
position of the first leading segment in large steps, 
however, its positioning in small steps is not smooth. 
While the control model assumes the tendons are routed 
parallel to the axis of the catheter, the tendons actually 
follow a very steep helical path, leading to small errors . 
Backlash was observed between actuator pulleys and 
tendons when the actuator reversed direction to steer the 
tip in the opposite direction. 

CONCLUSION AND DISCUSSION 
The modularized actuation unit can successfully drive a 
steerable segment of a tendon-actuated soft robotic arm 
independently and also together with other segments. 
Follow-the-leader control is achieved but with 
displacement error in the tip and in the following 
segment. With an improvement of  the utilized 
mathematical model as well as the use of tendon force 
monitoring to compensate for actuator backlash, the error 

is likely to be reduced. To steer a multiple-segment soft 
robotic arm, a controller other than two joy sticks should 
be designed to have a better  ergonomics since human 
operators are not used to control more than two segments 
at once. The advantage of a modularized actuation unit is 
its expandability and flexibility in adapting to robotic 
arms with varying DOFs. In the presented manipulator, it 
is proven that a robot with modularized actuation can be 
easily extended to more segments. Ignoring the physical 
limits on the maximum overall size of an actuation unit, 
the theoretical maximum number of controllable 
segments would be 128, as dictated by the maximum 
number of 7-bit addresses on an I2C bus. Further research 
will focus on decreasing the number of required 
actuators, miniaturization of the system, adding sensors 
that provide position and force feedback to reduce errors 
and also on the control model of the soft robotic arm.  

Figure. 4. Top view of follow-the-leader motions in different 
steps. From (A) to (C), the leading segment was steered to 
the right, and followed by the second segment. From (D) to 
(F), the leading segment was steered to the origin and 
followed by the second segment. 
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INTRODUCTION 

Concentric tube robots (CTRs) are composed of pre-
curved, super-elastic tubes that behave like continuum 

robots with a rotation and translation degree of freedom 

per tube [1]. The tubes interact with each other when 

rotating and translating to bend and twist in a manner 

resulting in curvilinear paths as seen in Figure 1. CTRs 

are clinically employed in minimally invasive surgery 

(MIS) in applications of actuated steerable needles or 

teleoperated manipulators. Ophthalmological, endonasal 

and fetal surgery have been explored interventions that 

may benefit highly from the dexterity, compliance and 

flexibility of CTRs [2]. In such applications, the main 

benefit is having a flexible articulated instrument while 
maintaining a small incision point to minimize trauma at 

the entry point. 

Figure. 1. Concentric tube robot kinematic inputs for 3 tubes 
adapted from [6]. 

Compared to rigid link robots, the kinematic modelling 

of CTRs is more complex due to the non-linear 

interactions of the tubes. Previous model-based work has 

throughly investigated various solutions with respect to 

computation complexity and accuracy. A geometrically 

exact model [3] is one such solution but has its limitations 

in terms of transverse shear, elongation and friction. A 

generally applicable modelling technique has not yet 

emerged. 

In this work, we present a goal based curriculum 

reinforcement learning approach to learn the inverse 

kinematics of CTRs. Reinforcement learning is an 

iterative paradigm where an agent aims to learn the 

optimal sequence of actions to achieve a goal 

summarized by a reward signal.  We focus on simulation 

results in this work because transfer learning is an active 

research area with various strategies such as domain 

randomization being explored. Although previous work 

has investigated model-free kinematics for CTRs 

[4,5,6,7], our contributions in this work are a novel 
training strategy with goal based curriculum and 

confirming previous reinforcement learning approach 

results [7] with a more accurate kinematics model [3] 

used for simulation. 

MATERIALS AND METHODS 

As described in [7], we formulate a Markov Decision 

Process (MDP) with states, actions and reward function. 

The state is defined as rotation (αi) and extension (βi)

position for each tube i in trigonometric form [6], desired 

goal, g, achieved goal or robot tip position, ĝ and goal 

tolerance δ(𝑡). The trigonometric form, γi, is defined as

γi = {𝛾1,𝑖 , 𝛾2,𝑖 , 𝛾3,𝑖} = {cos 𝛼𝑖 , sin 𝛼𝑖 , 𝛽𝑖}

Thus, we can define the state at timestep t as 

st  = {γ1,  γ2,  γ3,  g −  ĝ, δ(𝑡)} 

The extension joint, βi can directly be obtained from 𝛾3,𝑖

and the rotation joint αi can be obtained by

αi = atan2(γ2,i, γ1,i)

The kinematic input variables (α, β) are shown in Figure 

1 where 𝐿𝑖  is the overall length of tube 𝑖 . Actions are

defined as changes in rotation and extension positions in 

a single timestep. The desired goal, g, is defined as a 

Cartesian point in the achievable workspace. The desired 

goal, ĝ, is the tip position of the robot determined with 

forward kinematics in simulation. The reward at timestep 

t, is defined with a reward function as follows, 

rt = {
0, et  ≤ 𝛿(𝑡)

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where δ(𝑡)  is the goal tolerance as a function of 

timesteps and et is the Cartesian error from the robot tip

to desired goal. 

To investigate a goal-based curriculum, we propose three 

goal tolerance functions. Using a starting goal tolerance 

𝛿initial, and final goal tolerance δfinal, with 𝑁𝑡𝑠 being the

total number of timesteps to apply the function, we can 

fully define these functions. The first function is a 

constant tolerance, 

δ(t) = {
δfinal , 𝑡 ≤ 𝑁𝑡𝑠

δfinal , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The second function is a linear, 

δ(t) = {
𝑎𝑡 + 𝑏, 𝑡 ≤ 𝑁𝑡𝑠

δfinal , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑎 = (δfinal − δinitial) 𝑁𝑡𝑠⁄
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𝑏 = δinitial 

The final function is exponentially decaying with 𝑎 as an 

initial tolerance and 𝑟 as the rate of decay. 

δ(t) = {
𝑎(1 − 𝑟)𝑡 , 𝑡 ≤ 𝑁𝑡𝑠

δfinal , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑎 = δinitial  

𝑟 = 1 − (δfinal δinitial⁄ )𝑁𝑡𝑠
−1

 

For the second function, the tolerance remains at δfinal 

for 𝑡 > 𝑁𝑡𝑠 till the end of training. We train a three tube 

robot system with parameters listed in Table 1, where 

stiffness is 5 GPa and torsional stiffness is 2.3 GPa with 
deep deterministic policy gradient [8] and with hindsight 

experience replay [9]. We use parameters found in [7] 

with multi-variate Gaussian noise. Each experiment was 

trained for a total of 300,000  and 𝑁𝑡𝑠 = 150,000 , 

δfinal = 1 mm and δinitial = 20 mm and 19 parallel 

workers. 

𝐿 

(mm) 

𝐿𝑐𝑢𝑟𝑣𝑒𝑑  

(mm) 

𝑑𝑖𝑛𝑛𝑒𝑟 

(mm) 

𝑑𝑜𝑢𝑡𝑒𝑟 

(mm) 

Pre-

curvature 

215.0 14.9 1.0 2.4 15.82 

120.2 21.6 3.0 3.8 11.8 

48.5 8.8 4.4 5.4 20.04 

Table. 1. Simulation robot parameters. From inner to outer. 

RESULTS 

To compare convergence of training of the experiments 

we plot error through training with the shaded standard 

deviation area in Figure 2 and the cumulative episode 

rewards through training in Figure 3. 

 

Figure. 2. Comparing error during training for constant, linear 
and decay functions. 

 

Figure. 3. Comparing error during training for constant, linear 
and decay functions 

The final error found at the end of training was 1.4mm 

for the constant function, 4.8mm for linear and 2.9mm 

for the decay function in Cartesian space. With 2 million 

training steps, these methods are in-line with [7] which 

was on par with other simulation results [4]. 

CONCLUSION AND DISCUSSION 

Conducting this study we reached two conclusions. First, 

Although the final error for the constant function is lower 

than linear or decay, varying the goal tolerance had a 

large effect in the beginning of training by reducing 

errors very quickly with high rewards as compared to the 

constant function. Second, there is less deviation in the 

linear and decay function during the initial stages of 

training. 
In this study, a novel training methodology for concentric 

tube robots with reinforcement learning based on goal 

tolerance has been suggested to be useful at the initial 

stages of training. Expanding on work conducted in [7] 

that used simplified kinematics, this study trains with 

accurate kinematics of CTRs. In future work we will 

experiment with combining functions to improve 

convergence speed and lower errors. 
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INTRODUCTION 

Colorectal cancer (CRC) is the third most commonly 
diagnosed malignancy and the second most common 
cause of cancer-related deaths worldwide [1]. 
Conventional colonoscopy represents the gold standard 
for the evaluation of diseases of the colon and for CRC 
diagnosis [2]. However, this screening procedure is 
considered invasive – discomfort, pain and potential 
tissue damage can occur for patients. Ingestible 
endoscopic capsules have been developed to overcome 
the drawbacks of standard colonoscopy. Despite the 
advantages offered by these wireless devices, their main 
limitation is that their motion depends on natural bowel 
peristalsis only and it is not possible to control capsule 
motion and camera orientation [3]. Magnetic capsules 
instead rely on external magnetic fields to overcome the 
lack of controllability of standard ingestible capsules, 
however, they require bulky and expensive equipment to 
be actuated with enough precision and force [4].  
To actively and reliably control the movements of an 
endoscopic capsule system a number of embedded 
locomotion approaches have been explored, with robotic 
solutions being proposed by multiple research groups [4]. 
Systems based on rigid mechanical elements, like the 
robots presented in [5], can cause damage to the soft 
walls of the navigated GI tract despite their active motion 
capabilities. For this reason motion techniques based on 
treaded tracks [6] and elastic caterpillars [7] have been 
suggested. In [6], the rigid endoscopic capsule has four 
soft tracks powered by a worm-gear transmission and has 
successfully demonstrated benefits in terms of navigation 
speed, however, due to the fixed geometry of the 
proposed system, the four tracks are never 
simultaneously in contact with the walls, significantly 
reducing the controllability of the system. The robotic 
endoscopic system shown in [7] instead makes use of 
elastic tracks that passively deform to match the local 
lumen of the colon. This arrangement ensures a central 
positioning of the capsule body, however, its motion is 
strongly affected by the gravity action as well as by the 
lack of direct control on the geometry of the system, 
hence, of the interaction forces between the tracks and 
the wall of the GI tract.  
In this paper the Soft Shape-shifting Capsule Robot for 
Endoscopy based on Eversion Navigation 
(SoftSCREEN) is presented for the first time – a novel 
capsule-sized system that propels itself through the GI 
tract by means of a series of continuously everting elastic 
tracks distributed all around its body. A proof-of-concept 
2:1 scaled prototype for validation of navigation and 
shape-shifting capabilities, is proposed as shown in Fig. 
1. The system consists of a rigid cylindrical body (Fig. 1-
b, light blue) which encases a worm gear powered by a 
motor. The motion is provided by six elastic tracks 
engaging with the worm gear teeth, regularly distributed 

around the capsule lateral surface. Differently from other 
track-based capsule designs, the geometry of the 
SoftSCREEN system can be changed by pressurising the 
two toroidal chambers displayed in white in Fig. 1. When 
the chambers are inflated, the elastic tracks are deformed 
in the part not engaged in the worm gear. This design 
feature allows to match the local lumen of the GI tract, 
ensuring constant traction of all the tracks. The proposed 
inflatable mechanism allows also for self-alignment of 
the system with the central axis of the targeted section, 
thus providing a stable configuration for the camera 
embedded for navigation and screening. The revolution 
of the worm gear leads to the revolution of the tracks 
around the inflatable chambers and along the length of 
the capsule, enabling navigation (Fig. 1-a). The colon 
lumen diameter varies in a range between 30 to 90 mm; 
therefore, the 2:1 scaled prototype diameter at rest should 
not exceed 60 mm, while deforming up to 180 mm. The 
main focus of this work is the validation of the navigation 
capabilities of this novel design – challenges like down-
scaling, durability, sterilization, single-use sub-systems, 
compliance with medical devices regulations, although 
all of critical importance for the development of the final 
system, are not discussed here due to space constraints.  

MATERIALS AND METHODS 

The CAD model of the prototype is shown in Fig. 1-b. A 
rigid chassis encloses a 10 mm diameter brushless DC 
motor (Maxon 315170 motor, 332426 gearbox) paired 
with a worm gear, both arranged longitudinally. The 
elastic tracks (Fig. 2-a) are made of Dragon Skin™ 20 

Figure 1 – (a) SoftSCREEN System motion principle: the inflation 

of the chambers ensures the contact of the tracks onto the colon 

walls. (b) Section of the 2:1 scaled prototype. 
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silicone (Smooth-On Inc., Easton, PA, US), have a planar 
low-friction internal surface to slide on the chambers and 
a series of teeth on the external surface to engage with the 
worm gear inside the chassis, while providing the desired 
friction when interacting with the walls of the colon. As 
the tracks, the chambers are made of Dragon Skin™ 20. 
As shown in Fig. 1-b, the chambers are secured to the 
chassis by means of flanges embedded in the chassis, 
custom rings (in green) and screws, creating an air-tight 
connection. Air in pressure is supplied to the chambers by 
the circumferential pressure inlets shown in Fig. 1-b: 
these are connected to the pressure supply through a 1 
mm diameter longitudinal pipe built into the chassis. 
Additionally, space for six 2 mm diameter channels is 
available for pressure lines, tendons or electrical cables.  
In this paper we present a preliminary design study 
focusing on Finite Element Method (FEM) static analysis 
of the chambers and of the tracks, using Dragon Skin™ 
20 silicone as material – the mechanical parameters of 
which have been obtained from [8]. The aim of this study 
is to optimize the design of the chambers to achieve the 
desired radial expansion (180 mm), without exceeding the 
diameter at rest of 60 mm. In Fig. 2-b/c/d we present three 
designs: in (b) we minimise the radial encumbrance at 
rest, in (c) we maximise the section area and in (d) we 
maximise the internal curvature. These profiles have the 
following geometrical features (expressed as middle line 
perimeter of the section profile, deformable silicone 
volume, thickness):(b) 39.42 mm, 11.83 cm³, 2 mm; (c) 
66.39 mm, 13.94 cm³, 1.5 mm; (d) 68.9 mm, 14.77 cm³, 
1.5 mm. A larger section area ensures more material to 
deform, while a large and uniform curvature prevents 
localised areas of high stress, that could lead to rupture of 
the chamber. Profile (c) has a longer section perimeter and 
internal curvature radius of 1 mm/1.5 mm. Profile (d) has 
shorter section perimeter but features a uniform internal 
curvature radius of 3 mm. Finally, with respect to profile 
(b), both (c) and (d) are as wide as the chassis and have 
closer flanges to further increase the amount of 
deformable material, with slightly decreased thickness.  

RESULTS 

Due to computational limitations of the FEM software 

used (Ansys 19.0, ANSYS Inc.,US) the proposed profiles 

were tested deforming them only up to a third of their 

desired deformation in two scenarios: single chamber 

free inflation (3D study) and chambers-track interaction 

(2D study), modelling also the track (Dragon Skin™ 20) 

and the chassis (steel). The results of the simulations are 

illustrated in the Fig. 3. Fig.3-a shows the circular profile 

on the left as the best for the free inflation, with a 

maximum stress of 0.675 MPa, while the right profile 

exhibited maximum stress 0.758 MPa, with a radial 

deformation of 21 mm in both cases. In the chambers-

track interaction case (Fig. 3-b) instead, the squared 

profile showed less localized maximum stress, peaking at 

0.326 MPa, while the circular one peaked at 0.369 MPa, 

in both cases for a radial deformation of 20.3 mm.  

CONCLUSION AND DISCUSSION 

In this work, a novel design for an endoscopic 

shape-shifting robotic capsule is presented. A proof-of-

concept system is presented, investigating a 2:1 tethered 

version, focusing on colonoscopy. The large deformation 

of the inflatable and elastic elements composing the 

envisioned variable geometry mechanism pose the 

biggest design challenge. A preliminary FEM analysis of 

different designs for the inflatable chambers showed that 

a large and continuous curvature radius results in lower 

maximum stress in the free inflation scenario, while the 

larger amount of material in the squared profile results in 

a lower stress in the chamber-track interaction scenario. 

Regardless of the geometry, in both cases the maximum 

stress measured for a third of the desired deformation is 

ten times smaller than the tensile stress of the silicone 

rubber tested (3.8 MPa). These results will be validated 

in real prototypes in the sooner future. 
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Figure 2  – (a) track dimensions, (b) simple chamber profile. 

(c) squared chamber profile and (d) rounded chamber profile. 

Figure 3 – (a) 2D track/chamber simulation for circular (left) 

and squared profile (right). (b) 3D free inflation for circular 

(left) and squared profile (right). 
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INTRODUCTION 

To improve the quality with which a surgical procedure 

is performed it is necessary to have effective and 

systematic surgical training techniques: [2] the better the 

quality of the training, the lower the risk of incurring 

serious post-operative complications [1]. Automated 

surgical gestures classification and recognition are 

important precursors to achieving the goal of objective 

evaluation of surgical skills. [2]. Many works have been 

done to discover and validate metrics based on the 

motion of instruments that can be used as features for 

automatic classification of surgical gestures [3]. Most of 

the motion metrics proposed are derived from the ones 

developed for Minimally Invasive Surgery (MIS): which 

are based on motion analysis performed in cartesian 

space (e.g. tool-tip velocities and accelerations). The 

introduction of Robotic-Assisted MIS (RAMIS) with 

improved control and dexterity of surgical instruments 

could enable the introduction of more complex and 

descriptive metrics: the motion of teleoperated RAMIS 

reflects the motion of the operating human surgeon and 

the robot senses its kinematic variables. Some recent 

research works have introduced metrics specifically 

designed for RAMIS, based on orientation information 

[3], gripping, and interaction forces with the environment 

[4]. To the best of our knowledge, these metrics have 

been devised and applied in the cartesian space and not 

in joints space. In this work, we present a series of 

angular metrics that can be used together with cartesian-

based metrics to better describe different surgical 

gestures. These metrics can be calculated both in 

cartesian space and in joint space and are used as input 

features to an automatic surgical gesture classification 

algorithm. To evaluate the proposed metrics we introduce 

a novel surgical dataset that contains both cartesian and 

joints spaces data acquired with da Vinci Research Kit 

(dVRK) [5]. The dataset consists of 40 subsequent 

suturing exercises performed by a single expert operator. 

The obtained results confirm that the application of joint 

space metrics improves the accuracy of gesture 

classification: five out of the ten most important features 

are from joint space and six of them are orientation based 

features; this confirms that our proposed orientation 

based metrics in joint space are a good set of features. 

The results also show that specific joints have a greater 

importance in the automatic classification of surgical 

gestures. 

MATERIALS AND METHODS 

In this work we extended the Cartesian metrics 

introduced in [3] to consider their application to the joint 

space. In the following formulas, we will show how to 

calculate metrics on a generic joint k. The calculation of 

the average metric on more joints is a trivial extension. 

In the joints space we introduce the Angular 

Displacement Joint (ADIJ) metric as: 

𝐴𝐷𝐼𝐽𝑘  =  ∑ |𝜃𝑖+1  −  𝜃𝑖 |  (1)
𝑁−1

𝑖=1
 

where 𝜃𝑖 and 𝜃𝑖+1 are angles corresponding to joint k in

two successive samples and N is the number of samples. 

Another metric is the Time Angular Displacement Joint 

(TADJ): 

𝑇𝐴𝐷𝐽𝑘 =
1

𝑇
 ∑ |𝜃𝑖+1  −  𝜃𝑖|

𝑁−1

𝑖=1
                                  (2)

where T is the duration of the specific surgical action 

considered. Also, in the joint space we define the metric 

Rate Of Change Joint (ROCJ): 

𝑅𝑂𝐶𝐽𝑘 =
1

𝑁 − 1 
 ∑ 𝜔𝑖

𝑁−1

𝑖=1
                                         (3)

where 𝜔𝑖  is the instantaneous angular velocity of the

joint k and N is the number of samples corresponding to 

the specific action considered. 

Our data contain also information about current joint 

effort (e.g joint motor current, joint force or torque) as a 

scalar value 𝜏𝑖. Based on this information we introduce

the mean effort (MEJ) which represents how the joint k 

interacts with the environment: 

𝑀𝐸𝐽𝑘 =
1

𝑁 − 1
∑ 𝜏𝑖                                                 (4)

𝑁−1

𝑖=1

A strong limitation for the evaluation of the proposed 

metrics is that surgical datasets publicly available in the 

literature, such as JIGSAWS [6], do not contain 

information in joints space. Therefore we acquire a new 

surgical dataset called YEAST (Yet Another Surgical 

Training Dataset) that contains both information.  The 

acquired dataset consists of 40 trials of the same suturing 

task performed by a single expert user (see Figure 1) 

using a full dVRK setup and it is publicly available at 

https://gitlab.com/altairLab/yeast-dataset. For each trial, 

kinematics and endoscopic video data from stereo 

cameras are recorded. Different data streams have been 

synchronized and geometrically calibrated to provide 

coherent and consistent information.  The surgical 
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gestures executed in the dataset have been manually 

annotated following the JIGSAWS convention [6]. 

Figure 1 Left: Example of endoscopic view during suturing 

task. Three pass continue suture is performed using large 

needle driver on silicone phantom. Right: Histogram showing 

the number of samples for each gesture.  

We investigate the ability of the proposed metrics to 

discriminate surgical gestures in two steps. First, we 

compute for each annotated gesture, the metrics using 

recorded kinematic values from the beginning to the end 

of the movements. Then, we analyze which are the most 

significant metrics for the classifier. To do so, we select 

the same Random Forest Classifier (RFC) proposed in 

[7]. Due to the high imbalance of the number of instances 

for each gesture, as shown on Figure 1 (Right), we 

validate our classifier using Stratified K-Folds (SKF) 

methodology (i.e. the folds are created in a way that they 

contain at least one instance for each class in both 

training and testing phase). 

RESULTS 

We analyze the contribution of cartesian and joint space 

metrics for the task of surgical gesture classification. The 

mean accuracy is obtained using SKF methodology on 

three groups of metrics: cartesian space metrics, joints 

space metrics, and combined cartesian space and joints 

space metrics. The highest average classification 

accuracy of 86.51% is obtained using both cartesian and 

joint data. We obtain an accuracy of 83.01% if we use 

only joint space metrics and an accuracy of 75.27% if we 

use only cartesian space metrics. In Figure 2 we report 

Precision, Recall and F-Score for each gesture 

recognized using only cartesian space metrics or 

cartesian space metrics and joints space metrics together. 

CONCLUSION AND DISCUSSION 

The accuracy, Precision, Recall and F-Score we obtain 

considering only joint metrics is better than that obtained 

considering only the cartesian metrics. This confirms that 

the proposed metrics are useful in order to obtain a better 

classification of the gestures. Results in Figure 2 suggest 

that the combined analysis of both cartesian and joint 

metrics allows us to get better performances during the 

classification phase. This is due to some translational 

gestures are well described by motion metrics in the 

cartesian space while orientation gestures are better 

described by metrics in the joint space. 

Figure 2: Precision, Recall and F-Score for each gesture 

computed with only cartesian space metrics or in cartesian 

space metrics and joints space metrics together.  The highest 

scores are shown in bold. 

The classification method, however, fails for some 

gestures, mainly because the number of occurrences of 

such gestures is very low as shown by Figure 1 (Right). 

Other errors are instead attributable to the intrinsic 

similarity of some surgical gestures. 

More detailed analysis show that the joints of the 

instrument unit have a greater importance for the purpose 

of gestures classification than the joints of the base unit. 

This work is a first step towards extending available 

objective evaluation metrics to joint space, providing also 

a new dataset suitable for benchmarking the performance 

of different methods. Future works will focus on the 

automatic segmentation of the surgical gestures to permit 

an automatic assessment of surgical skills based on the 

proposed metrics. We are also working on extending the 

dataset with more expert demonstrations. 
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INTRODUCTION 

Optical coherence tomography (OCT) is increasingly 

used in biomedical and clinical imaging due to its 

combination of high-speed optical sectioning and high 

resolution. Side-viewing OCT probes with proximal 

scanning have been successfully used in the diagnosis of 

intravascular diseases, the itravascular stent strut 

assessment, as well as in the digestive tract. The 

rotational distortion of proximal-scanning endoscopic 

optical coherence tomography is significant due to the 

friction of optical fiber between the wire wall and the 

variable torque of the optical fiber. It can be further 

increased in the case of a steerable catheter used for large 

area scanning using a flexible robotized endoscope [1]. 

The robotized steerable OCT user can navigate the probe 

using telemanipulation with bending, translation and 

rotation of the steerable OCT catheter. 

This work is focused on correction of image artifacts 

presented in three-dimensional OCT imaging in 

rotational scanning. The results show a significant 

reduction of the image precession when implementing a 

robotic pullback instead of the conventional internal 

pullback of the optical probe. In this case the whole OCT 

catheter is in motion during the 3D-scanning eliminating 

the torsion caused by the internal friction between the

sheath and the rotating probe, so that the precession is 

90% reduced in comparison with the conventional 

pullback scanning. In order to fully reduce remaining 

precession, which can be attributed to motor speed 

instability, an image processing technique based on deep 

learning is also integrated. 

MATERIALS AND METHODS 

In this work, a steerable OCT instrument with an outer 

diameter of 3.5 mm is used for volumetric imaging [1]. 

The steerable instrument is terminated with a 2 cm long 

transparent sheath to allow three-dimensional OCT 

imaging using a side-focusing optical probe with two 

external scanning actuators. The instrument is connected 

to an OCT imaging system built around the OCT Axsun 

engine, with a 1310 nm center wavelength swept source 

laser and 100 kHz A-line rate. The OCT steerable 

catheter is compatible with one of two instrument 

channels of a robotized flexible intervention endoscope 

[2]. The distal end of the robotized endoscope can be bent 

in 2 degrees of freedom, translated and rotated. The 

steerable OCT catheter can be translated, rotated and bent 

in one plane. In addition, the rotation and translation of 

the inner OCT probe can also be controlled by a servo 

system. 

Conventional internal pullback scanning was effect-

tuated to image a 20 mm long 3D printed rectangular tube 

target in VeroWhite material (Figure 1(E)). In the next 

step the same pullback was effectuated using a robot.  To 

estimate stability of the image, ImageJ was used to 

manually measure the rotation of the 4 internal corners of 

the rectangular tube for each 1 mm of spacing with 

respect to the first frame. 

Figure. 1. Results of 3D reconstruction of the rectangular tube 

and the sum of the frames by performing regular pullback 

scanning (A, B)), and results of robotic pullback scanning (C, 

D). (E) Rectangular tube target for testing. (F) Angular rotation 

versus the pullback scanning distance (mm) for regular 

pullback and tool pullback with steerable catheter. 

To further improve the alignment on the robotic volu-

metric scanning data, a deep convolutional neural net-

work (CNN) based video stabilization algorithm was 

applied to eliminate the image rotation distortion betw-

een B-scans. This algorithm takes image sequence as 

input to get image correction vectors. To train the algo-

rithm, a data set of 3.6 million image pairs is generated 

with 1800 true OCT images. Each image pair is generated 

by distorting original images with a random Non-uniform 

Rotational Distortion (NURD) warping vector. The 

training pipeline is implemented with Python codes, 

Pytorch framework is used for network implementation. 

After training the deep network for 14×104  iterations, it’s 
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deployed with a NVIDIA QT1000 graphics card to 

process the OCT data collected with the proposed 

scanning system. We calculated the standard deviation 

(STD) value and en-face projections [3] of videos to 

evaluated the efficiency of the stabilization algorithm. 

RESULTS 

A conventional OCT pullback scanning presented image 

rotation between 2D radial frames from -3.04° clockwise 

at 1.06 mm to a maximum rotation angle of 63.71° 

counterclockwise at 14 mm, ending in an angle of 28.55° 

at 20 mm (Fig. 1 F). When performing volumetric robotic 

scanning of the steerable OCT tool the image rotation 

was reduced to the range of 6.03° to -5.83° at 13 mm and 

18 mm correspondingly. This constitutes an impr-

ovement of approximately 90% in reduction of 

precession when preforming backward scanning. The 

actual scanning length was 20.9 mm and the speed of the 

pullback motion of the robotic instrument was 2.7 mm/s. 

Figure 1 shows the 3D reconstruction in both scanning 

methods. The conventional OCT pullback scanning 

presents major deformation in Figure 1(A) due to a large 

rotation angle, while such deformation is highly reduced 

in the case of robotic volumetric scanning in Figure 1(C). 

Figures 1(B, D) show the sum of all the frames to better 

demonstrate the difference of precession for each 

scanning method. 

Figure. 3. Top row is the comparison of 3 adjacent 

frames in RGB channels, the bottom row is the 

comparison of A-line accumulated images with the 

videos containing 900 frames. The dashed circles mark 

out areas prohibiting significant NURD and corres-

ponding stabilized result. The dashed boxes are enlarged 

for better visualization. 

The STD value of the video before applying stabilization 

algorithm is 7.33 ± 0.52, which means it still experience 

fluctuation with a maximum value of 9.15. After 

applying the deep video stabilization algorithm to the 

data, the STD value of the video decreases to 6.19 ± 0.08, 

which has both lower mean value and variation.  

In Figure 3, the top row shows 3 consecutive frames 

encoded in the red, green and blue (RGB) channels and 

superimposed to one individual image. The stabilization 

algorithm reduces the “colorful” part of unstable original 

frames significantly, while maintaining the texture 

characteristics of the original OCT images. It is also 

presented in en-face projections of the 3D OCT data set 

where each A-line is accumulated to one single value by 

mean intensity projecting (bottom row in Figure 3). In 

this case an X axis corresponds to a circumferential 

scanning and a Y axis to a longitudinal volumetric 

scanning. The frame size of one OCT image is 1024×832, 

which contains 832 A-lines. We transform 900 frames 

into a 900×832 matrix, and for display reason the matrix 

is normalized and the mean value is subtracted. Before 

stabilization, the image on the bottom left of figure 3 

shows more unsmooth fluctuation. The right bottom 

image shows the A-line accumulation of stabilized 

robotic scanning data, which has less fluctuation, 

whereas its overall texture matches the overall texture of 

the bottom left image. This indicates that the algorithm 

can stabilize the video without changing other 

information in OCT images.  

CONCLUSION AND DISCUSSION 

We have demonstrated the potential benefit of 

implementing the pullback scanning with the robotic 

tool, our results show reduction of precession of the OCT 

images by about 90% in comparison with the regular 

internal pullback, significantly reducing as well 

distortion in 3D reconstruction.  

With a deep learning based method applied to the robotic 

scanning data, the stabilization of OCT frame stream is 

further improved, representing by the reduced STD value 

and the lower fluctuation in the en-face projection.  Other 

scanning methods using the automatic capabilities of the 

robot will be explored in the future work. 
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INTRODUCTION
Coronary artery disease (CAD) is one of the major cardio-

vascular diseases threatening human health worldwide and is
responsible for around 20% of deaths in the developed coun-
tries [1]. Patients suffering from CAD experience different
levels of chest pain, shortness of breath, fatigue, or irregular
heartbeat. Cardiac catheterization is widely performed to
treat CAD. In this procedure, a flexible catheter is steered
along the aorta until it reaches the left and right coronary
arteries. Next, a guidewire is employed to cannulate the
occlusion area [2].

Accurate control of flexible catheters is vital in interven-
tions. Nevertheless, precise steering is difficult in practice.
Amongst other factors, hysteresis is a major cause of impre-
cision regardless of actuation technologies. Hysteresis gen-
erates a complex non-linear multi-valued relation between
input commands and the response of the catheter distal tip.
In the past, researchers endeavored to model and compensate
for the hysteresis in catheters based on mathematical model-
ing [3], where a complex identification process is imperative.
In comparison, Neural Networks (NNs) are appealing for
their ability to accurately represent complex nonlinear behav-
ior, albeit dependent on the specific application. This makes
them feasible for modeling and compensating nonlinear
systems. In this work, the feasibility of employing a NN to
deliver precise catheter control in presence of a hysteresis-
affected actuation system is investigated.

METHODS
The output of a system suffering from hysteresis depends

on both the current and past inputs, typically described as
a time series of hysteresis loops. Long Short-Term Memory
(LSTM) proposed in [4] is an effective tool for processing
sequential information since it takes historical information
into account and utilizes this knowledge to predict the
behavior at future time steps. Therefore, LSTM is logical
to be used in this work. In the following, the LSTM was
first trained based on real hysteresis data collected from an
experimental setup and then validated on that setup as well.

Pneumatic Artificial Muscles (PAMs) show good promise
in intervention tools thanks to its advantages e.g. large
bandwidth, easy fabrication, and lightweight. Nevertheless,
hysteresis is a major challenge when using PAMs, thus

*This work was supported by the ATLAS project. ATLAS has received
funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 813782.
Corresponding author: Di Wu, di.wu@kuleuven.be

Fig. 1. The experimental setup for hysteresis data collection and LSTM
performance validation. A close-up demonstrates the bending configuration
of the catheter when the PAM is inflated.

compensation of hysteresis originating therefrom based on
LSTM is investigated. To collect training data for the LSTM,
an experimental setup was developed (Fig. 1). The setup
contains a one-DOF Nitinol distal catheter segment with
an embedded PAM. The PAM is attached off-center to the
catheter tip. When increasing the pressure, the PAM contracts
and pulls via a steel cable on the catheter tip, causing a
bending moment. A laser sensor is used to measure the
catheter tip displacement. A proportional pressure valve is
employed to regulate the pressure applied to the PAM. The
pressure and displacement data is collected at a sampling
frequency of 250 Hz and visualized on LabVIEW R©.

To fully excite the system, pressure signals as descending
sine waves following:

p(t) = e−τt(2.5× sin(2πft− π

2
) + 2.5) [bar] (1)

were used to induce multi-loop hysteresis. The resulting
catheter tip displacement - pressure data collected therefrom
were then used to train the LSTM. In Eq. (1), the variable
τ regulated the descending speed of the sine wave and
it was set to -0.05. The variable f was the excitation
frequency in Hz and it was switched among 0.2, 0.4, 0.6,
0.8. Consequently, there are four groups of data containing
34413 data points in total for training the LSTM.

To estimate the pressure for controling flexible catheters,
the displacement data were used as input to the LSTM, while
the predicted pressures are the output. The training of the
LSTM was performed on a 4 GB NVIDIA CUDA-capable
GPU. The LSTM was trained for 50 epochs, and the training
time is around 20 to 30 minutes. For prediction, the average
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Fig. 2. The validation procedure for investigating the performance of the
LSTM: 1) Creating a desired trajectory; 2) The desired trajectory is pre-
processed and fed into the LSTM; 3) The LSTM predicts the corresponding
pressures; 4) The predicted pressures are read by Labview and applied to
the catheter as feedforward control; 5) The catheter tip motion is measured
by a laser sensor; 6) Measured voltages are converted to catheter tip
displacements; 7) Both measured and desired trajectories are visualized and
compared.

inference time for a single point is 2.5 ms.
To evaluate the trained LSTM, an experimental procedure

shown in Fig. 2 was conducted and illustrated as follows: 1)
desired trajectory of the catheter tip is created by the users.
In this work, a descending sinusoid trajectory following Eq.
(2) is tested:
d(t) = e−0.05t(4.5× sin(0.2πt− π) + 4.5) [mm] (2)

2) displacement data are reshaped into a window size of
120, containing previous 120 samples d(t−119),d(t−118), ...
d(t−1) and d(t), and they are fed into the trained LSTM
to predict p(t); 3) predicted pressure is produced by LSTM
and saved into a spreadsheet; 4) Labview reads the pressures
from the spreadsheet and sends this to the PAM-driven
catheter through an analog output as a feedforward control.
The pressure control frequency is 250 Hz; 5) a laser sensor
measures the motion of the catheter tip as voltage signals;
6) the measured voltage signals are converted to catheter
tip displacements; 7) both the desired trajectory and the
measured trajectory are visualized and compared on the
same plot. Root Mean Square Error (RMSE) and Maximum
Absolute Error (MAE) are used to quantitatively evaluate the
performance of hysteresis compensation.

A controller based on a backlash model introduced in
[5] was established for comparison with the LSTM-based
controller. The backlash model is a rate-independent model
that has a non-continuous function describing the dead zone.
Measured trajectories resulting from both controllers are
visualized and compared.

RESULTS
The experiments on both the LSTM and backlash mod-

els were run ten times. One example of ten experimental
results is visualized in Fig. 3. It can be observed that the
LSTM-based controller is able to achieve effective hysteresis
compensation, and the measured trajectory can precisely
track the desired trajectory. One can see that the backlash
model-based controller tries to compensate for the hysteresis
by applying large pressure variations when approaching the
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Fig. 3. Trajectories achieved by LSTM (blue) and backlash model (orange)
compared to the desired trajectory (red).

TABLE I: MEAN AND STANDARD DEVIATION OF RMSE AND MAE
OF 10 GROUPS OF EXPERIMENTS

Models RMSE (mm) MAE (mm)
Mean STD Mean STD

LSTM 0.214 0.007 0.626 0.033
Backlash model 0.499 0.014 1.350 0.042

extrema points. However, this controller has difficulties in es-
timating the exact pressure-change that is needed, leading to
significant over/under-shoots followed by some oscillations.
The average mean and standard deviation over ten groups of
the experiments (Table I) of the LSTM are 0.214 mm and
0.626 mm, respectively, which are less than half of the error
achieved by the backlash model (RMSE = 0.499 mm and
MAE=1.350 mm).

CONCLUSION AND DISCUSSION
This study proposes to compensate for the hysteresis in a

flexible catheter using LSTM. The proposed LSTM was first
trained based on four groups of descending sine waves, then
the LSTM is utilized to predict the pressures based on a given
trajectory. The performance of the LSTM was validated on
a descending sine wave (RMSE = 0.214 mm, MAE = 0.626
mm). The results indicate that the LSTM is able to effectively
compensate hysteresis in a PAM-driven catheter. The errors
are less than half of those achieved by the backlash model.
Future work focuses on validating the generalization ability
of the LSTM on other trajectory patterns that are completely
different from the training data, e.g. ascending sine waves,
sine waves with time-varying frequency, triangle waves.
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I. INTRODUCTION

Ureteroscopy is a minimally invasive procedure which is
used to explore the upper urinary tract, allowing the diagnosis
and treatment of different conditions, such as kidney stones
or urothelial carcinoma. Navigation and diagnosis inside the
urinary tract are highly dependent upon the operators experi-
ence, and some image-related conditions such as the presence
of image artifacts, floating debris, occlusions in the video,
or image noise could add additional challenges for non-
experienced operators. The development of computer vision
methods for surgical assistance aims to deal with these limita-
tions by highlighting relevant information which can enhance
the performance of the surgeon and minimize the probability
of complications.

The task of lumen segmentation is a fundamental part in
the development of these assistance systems since this is the
reference which marks the path that the endoscope should
follow. However, this is not a simple task since there is a
high variability in the the inter-patient anatomical structures,
as well as the inner-patient variability, in terms of the different
shapes in which the lumen is deformed at different points in
the urinary tract.

Previous implementations of lumen segmentation has been
proposed for colonoscopy images, being the majority of them
based on the design of handcrafted feature extractors which
require the tuning of several parameters [1], [2]. The most
recent study proposes the use of a FCN-8 network [3] for the
general segmentation of elements appearing of colonoscopy
images, among them the lumen.

To the best of our knowledge, Convolutional Neural Net-
works (CNNs) have not been applied to semantic segmentation
of the lumen in ureteroscopy images. We attribute this with the
lack of a publicly available annotated dataset of ureteroscopy
images, which is needed in order to train and validate such
kind of networks. To tackle this we collected and annotated
our own dataset from ureteroscopy images.

In this paper we propose the application of a variation
of the well-known CNN architecture U-Net for the task of
lumen segmentation by adding batch normalization layers at

the output of each of the convolutional layers and changing the
loss function to the Dice similarity coefficient loss (LDSC).

II. PROPOSED METHOD

Inspired by the model proposed in [4] originally developed
for axon segmentation in microscopy images, we propose the
implementation of a lumen-segmentation network based on
U-Net architecture. We applied batch normalization at the
output of every convolutional layer. In our specific case, the
use of batch normalization provided stability and convergence
of the learning process given the high variability in the
structures, brightnes and image resolution among the images
of the dataset we used. A set of experiments was carried
out using the original implementation of U-Net without batch
normalization. It was observed that during training without
batch normalization, without a proper initialization of the
weights the network got stuck in a point where only white, or
only black images were obtained as outputs and with DSC
values bellow 0.25 in average.

The second modification with respect to [4] is a change in
the chosen loss function. The one used in this implementation
was the (LDSC) defined as:

LDSC = 1− 2TP

2TP + FN + FP
(1)

where TP is the number of pixels that belong to the lumen,
which are correctly segmented, FP is the number of pixels
miss-classified as lumen, and FN is the number of pixels
which are classified as part of lumen but actually they are
not. Adam optimization was used during the training. The
learning rate, and mini batch size for each of the models was
chosen by trying the different combinations between several
possible values of the hyper-parameters and using a 5-fold
cross validation strategy. Once the hyper-parameter values
were chosen, the training process was done dividing the data
set for training/validation in a ratio 65/35. The Wilcoxon T-
test on the DSC was used to determine statistical significance
between the different models trained.

For this study, 7 video dataset from 4 patients were col-
lected. The videos were acquired from the European Institute
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Fig. 1: Sample of results obtained using U-Net with BN with its respective
DSC score. The colors in the Overlay images are as follows, TP: Green, FP:
purple, FN: Blue, TN: Black.

of Oncology (IEO) at Milan, Italy and the KU Leuven Uni-
versity Hospital. All patients gave their informed consent for
data collection and use of it for research. The data collection
followed the ethical protocol approved by the IEO and in
accordance with the Helsinky Declaration. The videos are from
ureteroscopy procedures targeting upper tract tumor ablation
and kidney stone removal. From these videos, a total number
of 1,445 frames were extracted and manually annotated using
our own GUI developed in Matlab for this purpose. The video-
frames from patient one were set apart to be used as test
dataset. We compare the obtained results with the FCN-8
architecture that has been used for lumen segmentation in
colonoscopy images [5].

The performance metrics chosen to quantitatively evaluate
the results, were the DSC, the Precision (Prec) and Recall
(Rec), which are defined as

DSC = 1− LDSC (2)

Prec =
TP

TP + FP
(3)

Rec =
TP

TP + FN
(4)

III. RESULTS AND DISCUSSION

The boxplots of the DSC are depicted in Fig. 2. From these
result is possible to see that U-Net has the best performance
overall. The average values of DSC, Prec and Rec for this
network were of 0.65, 0.48 and 0.82 respectively. In com-
parison with FCN-8 in the gray-scale dataset U-Net achieves
a DSC 0.25 better than the FCN-8 network (p<0.05) and
in the case of the RGB dataset achieves an average value
0.18 (p<0.01) better than FCN-8. In general for both models
it was seen that the training in gray-scale images achieve

Fig. 2: Box plots of DSC obtained with the different CNNs tested.

better results among the same models. In the case of U-Net a
difference of 14% was observed (p<0.001) while in the case
of FCN-8 the difference was of 7% (p<0.05). This might be
related to the color-space itself of the dataset. Considering that
the gray-scale image dataset might have enough information
to perform the binary classification of pixels into lumen and
no-lumen, the addition of two channels would require the
adjustment of more parameters, which implicitly would require
a higher amount of data. Some sample of the segmented
images are depicted in Fig. 1

IV. CONCLUSION
In this paper, we addressed the task of lumen segmentation

in the ureter, for this purpose we proposed the implementation
of a Deep CNN. The network used consisted of a standard
version of U-Net with the addition of batch normalization at
the output of each of the convolutional layers. The method
was tested in different image spaces finding that for this task
the network performs better in gray-scale images and then
compare with a FCN-8 model which previously has been
used for lumen segmentation in colonoscopy images. We show
that the network performs better than the previous model
implemented for this task. This demonstrates that it could be
a suitable model for further development in the task of lumen
segmentation of the ureter.
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INTRODUCTION
Endovascular catheterization is a minimally invasive
procedure typically carried out with the use of catheters,
inserted in the vasculature and steered towards a desired
site. Preventing damage to the vasculature relies on the
precise navigation of the catheter’s tip, while minimiz-
ing the contact between the instrument and the vascula-
ture [1]. Robotic technology is increasingly investigated
in such task, as it promises a high level of precision.
Robots could further perform complex coordinated mo-
tion in 3D space. Developing a safe and precise controller
that accounts for the large amount of variability is far
from trivial. In order to tackle the associated challenges,
different control approaches have been introduced, such
as multi-task control frameworks [2].
This work proposes a constraint-based velocity-resolved
control approach for a steerable catheter, with a distal
bending segment. Figure 1 shows the steerable catheter
with distal bending segment (in red) between the base
pb and the tip pt of the catheter. The controller is tested
inside a virtual aortic vessel model.
Given the vessel centerline, locally approximated as a
line cl, the controller is designed such that the catheter
tip navigates within a safe zone (defined by a safe dis-
tance ds) around cl; and the mid-node of the bend-
ing segment backbone pn (situated between pt and pb)
keeps minimal contact with the vessel wall. The goal of
this work is to propose and assess a control framework
for the aforementioned control problem.

MATERIALS AND METHODS
The robot is controlled with a velocity-resolved
constraint-based scheme [3]. This kind of approach re-
quires the following elements: i) a forward kinematic and
differential forward kinematic functions relating the ac-
tuator space and task space, ii) control equations solved
with a quadratic programming (QP) approach, and iii)

Figure 1: System’s overview in the simulated aortic model
A , with a focus on the different components of the robot
and relevant frames in B . Representations of the control
outcome in the xy plane ( C ) and of the overall control ap-
proach with relevant variables ( D ) are shown.

task specification. The kinematic relation between y
(output space) and q (actuator space) and the obtained
control actions (based on the generalized Jacobian ma-
trix J) are described as follows:

y = g(q), ẏ = J(q)q̇ = ∂ g(q)
∂ q q̇ (1)

In our case, position and velocity constraints (i.e. task
functions) are defined. A velocity constraint imposes
that a particular velocity is followed by the time deriva-
tive of an expression g(q). Desired velocities ẏod are
computed as:

ẏod = Kp(yd − y) (2)

where (yd − y) = e (error) and yd and y represent the
desired and measured positions, respectively. Kp (di-
mensions: [1/s]) are the gains of the controller. A similar
reasoning can be applied to inequalities, see [3].

∗This work was supported by the ATLAS project. The ATLAS project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agreement No 813782.
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Forward and differential kinematics: The task spa-
tial relation is described by two mapping functions, the
robot kinematics (cc), and the distance function (dst).
These, combined and differentiated, provide the kine-
matics in function of (q):

d = gdst(gcc) (3)
J(q) = Jdst(pc) Jcc(q) (4)

where J is the task Jacobian matrix, and pc denotes any
node on the robot’s bending segment backbone.
The catheter has three control variables q from its three
degrees of freedom (DoFs): the bending angle θ, the
bending direction angle φ of the distal segment, and the
insertion ρ.
gcc(q) is characterized as the constant curvature kine-
matics (no external loads assumed), further discussed in
[4]. The catheter’s bending segment is thus modeled as
a circular arc, with l as the arc length:

gcc(q) = GξB


lcosφ (1−cos θ)

θ
lsinφ (1−cos θ)

θ
lcos θ
θ

 (5)

GξB denotes the orientation of frame {B}, attached to
the base (pb) of the bending segment and in which the
constant curvature kinematics are determined, with re-
spect to the global reference frame {G} (see fig. 1).
gdst is the task-specific function mapping, formulated as
follows:

gdst(pc) =
‖(pc − pcl)× ûcl‖

‖ûcl‖
(6)

where all elements are expressed in the global frame {G}
with pcl being a point on the approximated centerline cl
and ûcl its direction vector (cl = pcl + ûcl t, t ∈ R).
QP-based continuum robot control strategy: A
QP optimization problem is formulated for deriving the
control variables velocities q̇ from desired output varia-
tions, considering different task functions:

minimize
x

xTHx (7a)

subject to Lb≤ Ax ≤ Ub (7b)
lb ≤ x ≤ ub (7c)

where x denotes the vector [q̇ ε] (ε is a vector of slack
variables). H is a diagonal matrix comprising both
the control variables and the slack variables weights [3].
From eq. (1) and eq. (2), the robot’s tasks, relative to the
tip and mid-node (with their respective Jacobian matri-
ces), are implemented in the QP algorithm (eq. (7b)) as
position constraints (frame {G}):

J(q) q̇ ∼ Kp e+ ε where ∼∈ {=,≤,≥} (8)

Task specification using constraints: Three posi-
tion and one velocity constraints, detailed in Table 1, are
enforced so the catheter tip navigates in a user-defined
safe zone while minimizing contact between the vessel
and the catheter body.

Table 1: Implemented constraints overview. Note that con-
straints are divided into two priority levels: hard (higher
priority) and soft (lower priority) [3].

# Constraint Type Target
1 – Tip safety Hard inequality gdst(pt) ≤ 6 [mm]

2 –Tip towards centerline Soft equality gdst(pt) = 0 [mm]
3 – Mid-node towards centerline Soft equality gdst(pn) = 0 [mm]

4 – Forward insertion Soft inequality ρ̇ ≥ 1 [mm/step]

Experiment: From the task specification, an exper-
iment was carried out in which, during insertion, the
measured distances, dt and dn, of the catheter tip and
mid-node from the centerline were recorded. Constraints
2, 3 and 4 (soft constraints) were given weighting factors
of 0.6, 0.7 and 0.5, respectively.

RESULTS

Figure 2: The graph shows the distances dt and dn as a
function of the simulation steps considering the task specifi-
cation. ds depicts the safe zone distance for the catheter’s
tip. The obtained results are relative to the initial section of
the aortic model.

CONCLUSION AND DISCUSSION
Overall, the controller demonstrated safe navigation and
minimal contact between the vessel and the robot. The
catheter tip was kept within the safe zone and the mid
node of its distal segment showed no contact with the
simulated environment (the aortic model is considered
to have a radius of 16 mm). Having one active seg-
ment leads to a trade-off: one node’s convergence to
the centerline often translates into the other’s divergence
(fig. 2). The proposed task specification was successfully
verified.
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INTRODUCTION 

Sinus surgery is a procedure to open the pathways of the 

sinuses or restore pathological changes inside sinuses, 

such as inverted papilloma, fungus balls or carcinoma. 

Currently, rigid surgical instruments are widely used by 

surgeons. Given the complex anatomical structures, it is 

often highly challenging to target certain anatomical 

spots in a confined space, for example the anterior or 

lateral walls of the maxillary sinus. In some more 

complex cases, the surgeon needs to resort to open 

surgery. Due to the nature of anatomical structures of the 

nasal cavity and maxillary sinus, a large curve is always 

present in the expected surgical trajectory to reach the 

maxillary sinus (Fig 1). Therefore, it reveals that a 

flexible surgical instrument is necessary to perform sinus 

surgery under a minimally invasive manner, especially 

for the maxillary sinus. Before inserting surgical 

instruments into the maxillary sinus, an antrostomy is 

often performed by surgeon in order to create a passage 

to connect the maxillary sinus and the nasal cavity. In this 

context, the surgical instrument inserted from nostril is 

able to access the maxillary sinus. However, currently 

available design parameters are scarce. Most of them 

were obtained using conventional 2D measures in CT 

images, which resulted in large deviations from actual 

anatomical structures [1]. 

Figure. 1. The illustration of anatomical landmarks and 

structures in the nasal cavity and maxillary sinus. 

Statistical shape model (SSM) have been widely used in 

medical image processing, such as image segmentation, 

registration and reconstruction [2]. Except describing the 

variations in image domain, SSM is also capable of 

describing geometrical variations and features from 

various shapes and anatomical structures. Therefore, 

SSM of the nasal cavity and maxillary sinus has great 

potential to derive geometrical variations for which the 

impacts of shape variations on the specifications of 

flexible instrument can be investigated. However, to the 

authors’ knowledge, there is few study that uses SSM to 

investigate the design parameters for surgical instruments, 

especially for the flexible instruments.  

In this abstract, a statistical shape model of the nasal 

cavity and maxillary sinus was generated. Subsequently, 

a shape analysis was performed to derive essential design 

parameters from the established SSM. Preliminary 

results were reported demonstrating the capability of 

SSM to extract essential parameters which were hardly 

obtained from 2D measurements. 

MATERIALS AND METHODS 

After obtaining ethical approval (S63078), CT scans 

were collected from 20 healthy subjects that had no 

experience of pathological history on the sinuses. The CT 

scans were acquired using a Cone Beam CT (VGI EVO, 

NewTom, Verona, Italy) with 0.25 mm x 0.25 mm pixel 

resolution in plane and slice thickness between 0.25 and 

1 mm. The CT images were manually segmented using 

Mimics (20.0 version, Materialise, Leuven, Belgium) to 

get 3D surface meshes of the nasal cavity and maxillary 

sinus. Moreover, the antrostomy window was created 

deliberately during image segmentation. The segmented 

surface meshes were exported as STL files, resulting in 

20 left side and 20 right side surface meshes. The surface 

meshes of right sinuses were mirrored to the left ones. 

Eventually, 40 surface meshes of left sinuses were 

obtained. To build a SSM using principal component 

analysis (PCA) [3], point correspondences need to be 

established by registering all surface meshes. To realize 

it, an arbitrary mesh was selected as the reference mesh. 

An elastic registration was performed to register the 

reference mesh to the rest of meshes [4], which resulted 

in the replicated meshes, termed point correspondence 

meshes (PCMs). Subsequently, SSM can be built by 

applying PCA on the vertices of all PCMs together with 

the reference mesh. 

𝑈 = 𝑈 + 𝒃𝜱              (1) 

Where 𝑈 is a new shape instance and 𝑈 represents the 

mean shape. 𝚽 = (𝜙1, 𝜙2 …𝜙𝑡) is the matrix of the first

𝑡  eigenvectors and 𝒃 = (𝑏1, 𝑏2 …𝑏𝑡  )  is the vector that

describes the weights of eigenvectors. The range of 𝒃 is 

commonly limited to -3√λ to 3√λ , where the variance of 

𝒃 equals to corresponding eigenvalue (λ). 

After establishing SSM, the impacts of shape variations 

on two important parameters were investigated, namely 

maximum bending angle (MBA) and outer-diameter of 
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flexible instrument. To calculate maximum bending 

angle, several landmarks were manually identified on 

SSM, such as nostril (𝑃𝑛.), the most anterior point of the

maxillary sinus (𝑃𝑚𝑠). The rest of points were selected on

the outer surface of the antrostomy window to locate the 

position of antrostomy window, termed 𝑃𝑎𝑤 . The center

point of 𝑃𝑎𝑤  was calculated as 𝑃𝑐𝑒𝑛𝑡𝑒𝑟  in Fig 1. The

maximum bending angle can be estimated by calculating 

the intersection angle of two 3D vectors between 

𝑝𝑛𝑝𝑐𝑒𝑛𝑡𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑝𝑐𝑒𝑛𝑡𝑒𝑟𝑝𝑚𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.

Figure. 2. An example of nasal cavity width in a color map with 

different viewpoints in a and b, and a 3 mm threshold to 

distinguish areas: green (> 3 mm) and red (<3 mm) (c and d). 

The width of the nasal cavity constrains the outer 

diameter of the designed flexible instrument. To calculate 

it, the reverted normal vector on the surface mesh pointed 

to the inside of the nasal cavity. When a point was found 

on the opposite surface along the reverted normal vector, 

the distance between the found point and original triangle 

surface was calculated to represent the nasal cavity width 

in local area. To intuitively visualize the calculated 

widths, the data were mapped to a color map from orange 

(0 mm) to blue (10 mm). When taking 3 mm outer-

diameter as an example, a threshold was set at 3 mm to 

map widths in two different colors: green regions 

representing the width is more than 3 mm; and red 

regions representing less than 3 mm width. In this 

context, green areas can be considered as a safe region 

for an instrument with less than 3 mm outer diameter. 

Because all selected landmarks were selected from SSM, 

when various shape modes of SSM changed from -3√λ to 

3√λ, the positions of these points will be updated 

accordingly as well as the calculated design parameters. 

This feature provides a convenient way to explore 

defined design parameter. The mean and standard 

deviation (SD) of the absolute differences of the design 

parameters from various shape modes with respect to the 

data from the mean shape were reported. 

RESULTS 

SSM was built from 40 surface meshes. The mean shape 

and first three shape modes were shown in Fig 3. The size 

of the maxillary sinus was scaled equally in the shape 

mode1. Shape mode2 mainly included the morphological 

changes vertically. Shape mode3 represented the 

morphological change horizontally. The extracted 

maximum bending angle was 155.33° for mean shape, 

shown in Table 1. Except mode1, the rest modes caused 

at least 1 degree change in MBA. From nasal cavity width 

analysis results, for example, an outer-diameter 3 mm 

instrument could be considered in designing flexible 

instrument. 

Figure. 3. The visualization of the mean shape and the first 

three shape modes of the nasal cavity and maxillary sinus 

changing from -3√λ to 3√λ. 

Table 1. The extracted maximum bending angle (MBA) in the 

mean shape (MS)  and the mean±SD of absolute parameter 

differences between MS and the first three shape modes. 
MS mode1 mode2 mode3 

MBA(°) 155.33 0.33±0.33 1.52±0.93 1.03±0.64 

CONCLUSION AND DISCUSSION 

A statistical shape model of the nasal cavity and 

maxillary sinus has been established to derive 

quantitative design parameters for designing flexible 

instrument. This approach thus shows great potential to 

analyze the impact of designing flexible instrument in a 

confined 3D space. However, in this abstract, only two 

design parameters have been investigated from 20 CT 

data, which limit its generality in terms of age, race and 

gender. More design parameters and datasets will be 

investigated in the future, such as the length of rigid part 

from the nostril to antrostomy window, the sizes of 

antrostomy window and maxillary sinus. After exploring 

and covering more comprehensive design parameters, the 

proposed approach can be further developed for flexible 

instrument design in sinus surgery and potentially for 

other medical applications where complex anatomical 

structures are present in robot assisted minimally 

invasive surgery. 
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INTRODUCTION

During laparoscopic sacrocolpopexy (LSC) vaginal
vault prolapse is repaired by suturing one side of a syn-
thetic mesh between the vaginal cuff and/or cervix while
stapling the other side to the anterior longitudinal liga-
ment [1]. It is considered the preferred treatment for
vaginal vault prolapse [2], with good (82.5 %) long-term
subjective success rates [3]. However, technical diffi-
ficulties such as the loss of haptic feedback, and non-
ergonomic postures make it a long and stressful inter-
vention [4].

To get a proper view on the vaginal vault, a laparo-
scopic assistant is asked by the surgeon to move back
and forth between a number of fixed camera positions.
Miscommunication between surgeon and assistant may
lead to improper positioning of the endoscope and can
further increase stress levels and surgery time. There-
fore, LSC may benefit from a robotic camera assistant
which can learn the required endoscope positions in ad-
vance, such that the view on the surgical site is correctly
presented.

To ensure safe robotic endoscope positioning, this
work presents a force-based teach by demonstration al-
gorithm to assist the surgeon during LSC.

METHODS

The controller has six states: idle, resetting,
teaching, processing, initiating and copying.
For brevity, only the teaching, processing and
copying states are discussed here.

Teaching and Processing

During the teaching state the user guides the end-
effector in operational space while recording its end-
effector pose T and twist t with respect to the world
frame at a frequency of 1 kHz. The recorded data is
stored in a bag file.

The processing state reads the bag file and reduces
the amount of data samples. It iterates over the recorded
pose samples while calculating the difference between
consecutive positions ∆pi = ‖pi − pi−1‖ and rotation
matrix derived Euler angles ∆εi = ‖ε i− ε i−1‖. When

Figure 1: The copying state of the teach by demonstra-
tion controller.

either ∆p or ∆ε exceed a specified threshold, 1 mm or
0.01 rad respectively, the pose sample T i is saved along
with its corresponding twist sample t i. The set of pro-
cessed data is called the trajectory T :

T = {(T , t) | ∆p≥ 0.001∨∆ε ≥ 0.01}. (1)

Copying

After processing, the robot can start copying the tra-
jectory. Both recorded pose and twist are used to en-
hance the quality of the copied trajectory. Figure 1
shows the copying state for the force components of
the controller’s output wrench wcopy.

Consider two sets of consecutive samples

position: p∗i , p∗i−1

linear velocity: v∗i , v∗i−1

}
∈T , (2)

the measured current position p̃k and its projection p⊥k
on
−−−−→
p∗i−1 p∗i . A constant force f T ,c towards the current

desired position p∗i is calculated as:

f T ,c =
p∗i − p⊥k
‖p∗i − p⊥k ‖

c. (3)

Where c is a constant value. In the current implemen-
tation it is set to 1.5, which is enough to overcome tro-
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car friction while keeping forces low enough to ensure
safety.

Besides a constant force along T , one would also like
to compensate for disturbances that possibly move the
end-effector away from the trajectory. Therefore, a force
f T ,⊥ is added which moves the end-effector towards
T :

f T ,⊥ = K⊥
(
(p∗i − p̃k)−

(
p∗i − p⊥k

))
. (4)

The diagonal values of K⊥ (3× 3) are currently set to
200 Nm−1 which is fairly stiff.

To cope with the variation in speed, a velocity-based
force component f T ,v is added to the summation:

f T ,v = Kvv∗i . (5)

Lastly, since the stiffness along the trajectory ( f T ,c+
f T ,v) is quite low, it is easy to push back the end-
effector by a significant distance. To avoid lagging
too much behind, an additional force component f lag
is added. This component tries to align the end-effector
with the furthest progressed position along the trajec-
tory. I.e. a variable p⊥k,max = p⊥k is assigned every time
p⊥k > p⊥k,max. Figure 1 shows this for position sample
p̃k+1 which is pushed back past the previous desired po-
sition p∗i−1. The additional force is calculated as:

f lag = Klag

(
p⊥k,max− p⊥k+1

)
. (6)

Klag is the (3× 3) diagonal stiffness matrix for lagging
compensation and can be set to similar values as K⊥.

As a result, the total force acting on the end-effector
during the copying state is:

f copy = f T ,c + f T ,⊥+ f T ,v + f lag. (7)

The rotational errors are compensated analogously:

mcopy = mT ,c +mT ,⊥+mT ,v +mlag. (8)

Resulting in the wrench:

wcopy =

[
f copy
mcopy

]
. (9)

RESULTS AND DISCUSSION

Figure 2a shows the teached and copied trajectory. The
backdrivable robot (Virtuose 6D, Haption) was pushed
away by hand to illustrate its off-trajectory behaviour.
The combination of low-force behaviour along T and
stiff corrections when pushed off-trajectory allows for
safe and flexible movement between desired endoscope
positions during LSC. Figure 2b shows the error be-
tween the teached and copied trajectory. When no dis-
turbance is applied, the mean error and standard devia-
tion are 3 mm and 4 mm. A maximum error of 91 mm
is observed after applying the disturbance force. By
tuning the controller’s parameters, the algortihm can be
adapted for use in a variety of other surgical environ-
ments.

Figure 2: a) Teached and copied trajectory with distur-
bance applied by hand. b) Error between the teached
and copied trajectory.
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INTRODUCTION 

In cancer surgery, correct localization of cancerous 

tissue is critical for the success of the surgery [1]. 

Specifically, it requires to remove the malignant tissue 

completely while preserving the maximum amount of 

healthy tissue. Robotic Minimally Invasive Surgery 

(RMIS) nowadays is widely used for cancer surgery and 

it brings significant benefits to both patients and 

surgeons. However, surgeons are still suffering from the 

limited availability of sensing capability for accessing 

tumor margin intra-operatively during RMIS. For 

instance, haptic sensing, which is commonly used in 
open surgery, cannot be used for discriminating healthy 

and cancerous tissue in this case. Therefore, there is a 

significant need for new sensing methods for RMIS. 

Because of different cell compositions and cell 

organizations, the electrical bio-impedance 

characteristics can be very different among different 

tissue types, and also between healthy and pathological 

status of the same tissue type [2]. Consequently, this 

physical property can be used to discriminate different 

types of tissues and pathological conditions. 

This paper proposes a vision-guided system for 

autonomous Electric Bio-Impedance (EBI) scanning in 
RMIS, aiming to acquire information for discriminating 

cancerous from healthy tissue intra-operatively, and to 

visualize the resulting impedance map on the 

endoscopic image using Augmented Reality (AR).   

MATERIALS AND METHODS 

The system includes computer vision algorithms (tissue 
surface 3D reconstruction and tracking) and a high-level 

robot control interface for selecting the EBI scanning 

area directly on the endoscopic view. A monopolar 

forceps is fixed to the end-effector of a Panda robotic 

arm with its electrode connected to the EBI sensor. The 

EBI of the targeted tissue can be measured between the 

tip of the forceps and a reference electrode made from 

copper foil (70×40 mm), placed below the tissue.  

The user is first required to use a standard computer 

interface device (mouse or tablet) to select the target 

area to be scanned on the endoscopic video image.  A 
2D triangular deformable mesh is created on the 

selected area [3] and tissue surface 3D reconstruction is 

done using a dense stereo-matching reconstruction 

algorithm [4]. Then, a set of 3D points pi corresponding 

to the user-defined 2D mesh vertices are extracted.  

Subsequently, the robot autonomously positions the EBI 

forceps on all pi points based on the initial registration 

of the 2D mesh. It first places the tip of the forceps 15 

mm above each target point, which is set as a safety 

distance to compensate for possible errors in the 3D 

reconstruction. Then, the robot arm slows down its 

speed and approaches pi. When the tip of the forceps 
contacts the tissue, a change of EBI value under an 

empirically selected threshold is detected, and the robot 

starts to press the tissue for 2mm along the local tissue 

normal direction slowly. After the robot reaches the 

target depth, the system collects the EBI measurement 

[5] and then retracts the forceps along the same pressing 

direction for 15 mm. 

Once measurement process is completed, the 

corresponding impedance value of each pi is represented 

by a circle of a specific color selected according to the 

JET colormap. These 2D colored representations of 
measured impedance values are associated to the 2D 

mesh vertices. Then, the system automatically tracks 

tissue motions combining the 2D mesh with salient 

features tracking and a mass-spring-damper deformable 

model [4], adapting the impedance map in real time. 

Fig. 1 The setup of the proposed system. 

In order to represent the AR information correctly and 

to control the robot with respect to the visual 

information, different calibrations are conducted. The 

calibration procedures include 3 steps: (i) stereo camera 

calibration, (ii) robot-forceps calibration, and (iii) 

camera-robot calibration. The error of the stereo camera 

calibration is 0.32 pixels, and the robot-forceps 

calibration error is 1.26 mm. Based on these 

calibrations, the camera-robot calibration can reach a 
high precision of 1.59 pixels. 

In this study, a realistic experiment simulating a hepatic 

cancer resection surgery was conducted to demonstrate 

the effectiveness of the proposed system. As shown in 

Fig. 1, bovine liver was used, and a small area was 
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burned on the surface of the liver using a heating 

instrument in order to simulate abnormal tissue. When 

heating the tissue, the thermal effect caused different 

grades of protein denaturation in the area surrounding 

the heating point. In this case, the transition could 

realistically simulate the margin area between the tumor 

and normal tissue. In addition, the burned area could be 

easily seen since it was pink while the color of normal 

liver tissue was dark red. 

During the experiment, the system was commanded to 
scan an area around the burned tissue autonomously, 

while the user only needed to select such area. Once the 

impedance map was obtained, the liver tissue was 

moved to evaluate the tracking system performance. 

Fig. 2 Experimental results: (A) liver surface 3D 
reconstruction; (B) disparity map; (C) rectified endoscope 
image; (D) the forceps was guided to measure EBI of the 
vertices on the mesh; (E) colored representation of the EBI 
measurement on rectified image; (F) the final scanning result. 

RESULTS 

During the experiments, the vision system was 
demonstrated to perform the 3D reconstructions and 

generate the mesh successfully. As shown in Fig. 2(A), 

the 3D reconstruction was retrieved from the frame 

represented in Fig. 2(C). The corresponding disparity 

map is shown in Fig. 2(B). Given the target 3D points, 

the system could complete the EBI measurement on all 

the mesh vertices precisely (Fig. 2(D)). The EBI result 

was displayed in real time on the measurement position 

as shown in Fig. 2(E). The scanning area of Fig. 2 was 

about 30×30 mm2. 

The overall precision of the system was calculated as 
the overlap between the correctly identified burned area 

(with an impedance value over a threshold) and the total 

burned area, manually segmented on the image. The 

precision was found to be 73%, indicating a good level 

of identification of the abnormal area.  

The final scanning result is shown in Fig. 2(F), which 

has a clear position overlap with the normal tissue, 

abnormal tissue area and the transiting area. Moreover, 

a higher EBI value (3478.2±394.6Ω) was detected in the 

burned area, shown with red markers. A relatively lower 

EBI value (1743.1±443.2Ω) was found in the transiting 

area and displayed in orange and yellow colors. Finally, 

the lowest EBI value (1429.1±336.4 Ω) was found in 

normal tissue where the markers were in blue and green. 

Furthermore, the system shows the capability of 

tracking the measured results in real time when the 

tissue was moving. In Fig. 3, we moved the tissue in 

two random positions during the experiment, and the 

results demonstrated that the system could track the 
mesh reliably even with small tissue deformation. 

Fig. 3 The tracking system could effectively track the 
measured results in real time when the tissue was moving after 
the scanning.  

DISCUSSION 

The developed system effectively exploits a stereo 

vision system and a precise robotic arm to 

autonomously execute EBI scanning on tissue surfaces, 

aiming to assist surgeons in surgical margin assessment. 

The EBI sensing forceps press perpendicularly the 

tissue surface, obtaining the required measurements and 

tagging the tissue with AR markers to provide visual 

feedback to the user. In addition, the EBI results are 

associated to a deformable mesh tracking, allowing the 

tracking of the abnormal tissue. The experimental 
results demonstrate that the developed system can 

effectively measure, represent and track the EBI values 

of the tissues within a user-defined region of interest. In 

addition, the EBI scanning shows a gradual impedance 

change from the burned area to the normal area, which 

represents the transition area of tumor. This indicates a 

great potential of the system for assisting in determining 

resection margins. Future work will include an extended 

analysis of the system performance. 

REFERENCES 

[1] H. Gilles, et al. "Positive or close margins: reoperation 
rate and second conservative resection or total 
mastectomy?." Cancer management and research (2019). 

[2] Kalvøy, Håvard, et al. "Impedance-based tissue 
discrimination for needle guidance." Physiological 
measurement (2009). 

[3] Penza, Veronica, et al. "Hybrid Visual Servoing for 
Autonomous Robotic Laser Tattoo Removal." 2019 
IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS). IEEE, 2019. 

[4] Penza, Veronica, et al. "Dense soft tissue 3D 
reconstruction refined with super-pixel segmentation for 

robotic abdominal surgery." International journal of 
computer assisted radiology and surgery (2016): 197-206. 

[5] Cheng, Zhuoqi, et al. "SmartProbe: a bioimpedance 

sensing system for head and neck cancer tissue 

detection." Physiological Measurement (2020). 

Proceedings of the 10th Conference on 

New Technologies for Computer/Robot Assisted Surgery (CRAS 2020)

79



Development of a resistive-based sensor for real time shape detection of a spring 

based flexible manipulator 

S. K. Sahu1,2, I. Tamadon1,2, B. Rosa3, P. Renaud3, and A. Menciassi1,2 
1The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy 

2Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pontedera, Italy

3ICube, University of Strasbourg-CNRS-INSA, Strasbourg, France 

 sujitkumar.sahu@santannapisa.it 

INTRODUCTION 

Flexible robots can play a vital role in performing 

complex surgeries and diagnoses in minimally invasive 

procedures. Though they are good in adapting to various 

shapes, their control is difficult. Their flexibility creates 

uncertainty in their shape which may lead to damage of 

healthy tissues due to unwanted interactions. Therefore, 

the requirement of accurate and real time shape sensing 

is essential to achieve precise motion control of 

continuum manipulators. Image-based shape sensing [1] 

can suffer from the use of large radiation doses, 

dependence on nephrotoxic contrast agents, low 

resolution, and low signal-to-noise ratio. As an 

alternative, electromagnetic (EM) based shape sensing 

approaches are also used. Tully et al. [2] fused EM pose 

data with a kinematic model to reconstruct the shape of 

highly articulated snake robot. Song et al. [3] presented 

shape sensing of a flexible robot using the EM 

information from sensor and robot length. EM based 

methods have advantages like miniaturization, no 

obstruction of the line of sight, high sensitivity, etc. 

However, they suffer from disturbances due to presence 

of ferromagnetic material in the workspace. The tracking 

workspace is also limited on the EM field strength. To 

deal with these limitations, Sefati et al. [4] used a data 

driven method of regression modelling by taking 

information from Fiber Bragg Grating (FBG) sensors for 

shape reconstruction of a continuum manipulator. Liu et 

al. [5] used two modules, each consisting of three FBG 

nodes for shape sensing of continuum manipulators. 

These techniques show advantages such as fast response, 

miniaturization, high sensitivity, and negligible EM 

noise. However, their high cost and poor response to high 

strains limit their implementation in shape sensing. This 

paper presents the design of a flexible resistive shape 

sensor, fabricated by using a commercial conductive 

rubber, which is intended to detect the bending of a spring 

based mobile manipulator [6] using a constant curvature 

algorithm. The sensor shows several benefits in terms of 

cost, high elasticity, negligible electrical noise, freedom 

from high radiation doses, and large stretch-ability. 

MATERIALS AND METHODS 

Reconstructing the shape of a flexible robot requires the 

estimation of arc parameters. A commercial conductive 

rubber of 2mm in diameter made of carbon infused 

rubber from adafruit industries (Product Id – 519, USA) 

was cut into different lengths to be implemented as 

resistive sensor integrated in the spring based 

manipulator, available in the team [6]. Whenever the 

flexible manipulator bends, the length of the sensor 

changes and this in turn changes its resistance. Using this 

change in resistance, the arc parameters of the 

manipulator curvature can be estimated. The resistance 

of the material in relaxed state is 140-160 Ohm/cm, with 

a Young’s Modulus E=11MPa. We assume that the 

sensor doesn’t affect the performance of the manipulator 

because it imposes only an extra actuation force of 1.44% 

(difference between actuation force of the manipulator 

with and without sensor). In the next step, a prototype of 

30mm length was prepared and used for hysteresis 

analyses. Using a Universal Testing Machine (Instron, 

Model-4464, Italy), tensile tests were performed and 

mechanical hysteresis was determined from the resulting 

stress-strain relationship. Since the manipulator we 

consider does not exceed 20% strain, the sample is also 

subjected to a 20% strain. We performed ten cycles to 

simulate multiple loading and unloading conditions, 

varying also the strain rates (10mm/min, 30mm/min, 

50mm/min, 100mm/min and 200mm/min) to observe the 

effects on mechanical hysteresis behavior. A custom 

testbed was used for electrical characterization. 20% 

tensile strain, for one cycle and ten cycles, was applied 

on the sensor using a linear stage. The voltage across the 

sensor was measured using a DAQ system (NI USB-

6259) while the sensor was connected to a DC voltage 

source through a voltage divider circuit. The voltage and 

strain data acquired were used for determining electrical 

hysteresis. Furthermore, one pre-stretched (5%) sensor 

was embedded on the periphery of the spring-based 

manipulator with the help of nine 3D printed holders. 

Five different bending deformations were applied 

manually by hand (figure 1) and voltage data was 

acquired at each deformation using the same voltage 

divider circuit. Finally, the relationship between voltage 

across the sensor and arc radii of manipulator generated 

manually was estimated by curve fitting a 3rd order 

polynomial. The unknown value of the arc radius can be 

estimated by acquiring the voltage data and using in the 

determined relationship. 

Figure 1: Bending deformations applied to the manipulator 
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RESULTS 

The mechanical hysteresis curve for the sensor is given 

in figure 2. To stretch the sample to 20% deformation, 

2.7 MPa stress is required. In ten cycle experiments 

(figure 3) at different strain rates, mean hysteresis was 

found as 21% with standard deviation of 0.6%. The 

electrical hysteresis behavior of the sensor for single and 

multiple cycles can be seen from figure 4. The sensor 

produces 7.8% of voltage change for 20% elongation. 

Figure 2 : Mechanical hysteresis for 10 cycles 

Figure 3 : Mechanical hysteresis at various strain rates 

Figure 4 : Electrical hysteresis for 10 cycles 

Figure 5 : Curve fitting and sensor calibration process 

As discussed in the previous section, for sensor 

calibration the manipulator was bent into five different 

known radii manually (figure 1) and the voltage across 

the sensor was measured. The resulting voltage values 

were fitted into a third order polynomial with respect to 

arc radius as shown in figure 5. To verify the accuracy of 

this relationship generated, now four unknown bending 

deformations were applied to the manipulator manually 

and the voltage across the sensor was measured. The arc 

radius was estimated from the relationship shown in 

figure 5 and was compared to the arc radius calculated 

geometrically (figure 6). Finally, the error in the arc 

radius estimation was found as 3% on average.  

CONCLUSION AND DISCUSSION 

In this paper we present the development of a flexible and 

stretchable resistive shape sensor using a commercial 

conductive rubber. The mechanical hysteresis curve is 

repetitive over 10 cycles. At higher strain rates, such as 

for 200 mm/min, the hysteresis behavior also remains 

nearly the same as for low strain rates such as 10mm/min 

and 30mm/min. In case of electrical characterization, it 

produces 7.8% voltage change for a deformation of 20%, 

which is enough to be measured. In successive loading 

cycles, the resistive voltage across the sensor reduces due 

to the presence of electrical hysteresis and delay in 

restoration of the original material behavior of the sensor 

after each cycle. This analysis of hysteresis can help to 

increase accuracy of the shape sensing methods. After 

characterization, the sensor is embedded into a spring-

based manipulator and a relation between voltage across 

sensor and arc radius is determined by fitting a 3rd order 

polynomial. In future a constant curvature shape 

reconstruction algorithm will be implemented using three 

resistive sensors uniformly distributed across the 

periphery of the manipulator. The presented sensor could 

also be implemented in other systems such as cable 

driven manipulators using proper wiring management. 
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INTRODUCTION 

Minimally-invasive image-guided interventions offer 

significant advantages over traditional surgical 

approaches for diagnosing and treating a variety of 

cancer types. The increasing number of procedures is 

enabled through advancements in real-time medical 

imaging and medical image computing. Such 

interventional procedures are commonly performed by 

clinicians inserting needle-shaped devices or probes into 

a patient’s tumor. These procedures require skilled 

personnel as handling probes within the narrow bore of 

an MRI or CT scanner is considered highly challenging. 

Percutaneous needle insertion has become a prominent 

example for interventional procedures amongst robotics 

research due to its increased adoption in clinical 

workflows as well as its associated challenges for the 

operating clinician. To address such procedures, robotic 

systems have been developed which allow targeting and 

inserting probes and needles in a highly controlled 

manner [1]. Fluid-driven robotic systems can have 

significant advantages as motors and pumps can be 

placed away from the patient and outside the magnetic 

field in the case of MRI. He et al. have investigated the 

use of soft robotics technologies for MRI-guided needle 

guidance by creating a parallel inflatable mechanism [2]. 

In this work we present a novel design concept for a fluid-

driven sliding mechanism which employs soft 

membranes to steer and drive a needle probe and discuss 

its preliminary characterization. While most state-of-the-

art needle driving systems comprise of distinct 

mechanisms for clamping, inserting and steering the 

needle, the here-presented system combines these 

functions in a simple, easily-manufacturable and scalable 

mechanism which can retain MRI-compatibility.  

MATERIALS AND METHODS 

The proposed system consists of a two-part mechanism, 

as shown in Fig. 1, which is based on inflatable actuation 

stages. Each stage is comprised of a rigid housing with 

three circumferentially-aligned bushings to allow for 

axial sliding motion via attached guiding rods, which is 

induced by an external hydraulic piston. The housing 

contains a central bore through which the needle can be 

fed as well as one or more flexible membranes to provide 

the desired contact with the needle, as shown in Fig. 1b). 

Whilst previous work has shown that such a membrane 

or bladder alone can be employed to efficiently provide 

directed forces on an inserted object, the small needle 

diameter hinders efficient actuation through a balloon 

alone due to the highly variable contact surface upon 

inflation. In the present design this is overcome by adding 

sliding elements linked to the membrane (Fig. 1c) which 

allow for efficient radial pressure transmission. The 

sliders are equipped  with rubber tips to transmit 

occurring forces across the circumference of the needle 

and flexures to allow for needle tilting. Whilst a single, 

circumferential membrane equipped with radial sliders 

only actuates the clamping of the needle, directed motion 

in the plane of the actuation stage is achieved by 

sectioning the membrane and actuating the resulting 

sections individually. This not only allows translation of 

the needle, but also tilting when multiple actuation stages 

are combined. 

To trial the viability of the proposed design, a finite 

element simulation study is carried out. Commercially-

available FE software is employed (Ansys 19.0, ANSYS, 

Inc., USA) and static analyses are conducted for two-

dimensional simplifications of the mechanism given a 

unit slice thickness (1m). Okamura et al. investigated 

forces typically occurring during biopsy needle insertion 

in the liver, yielding static forces up to 2.3N before 

puncture [3] which serves as reference measure for the 

here-presented design. Different elastic materials with 

varying Shore-A  hardnesses are investigated for use in 

the deformable membrane (Dragon Skin™ 10, 20 and 30, 

Smooth-On Inc. USA). The silicone rubbers are 

modelled using a first-order Ogden formulation. 

Figure. 1 Overview of the fluid-driven needle insertion 

mechanism (a), with a cross-sectional view of an actuation 

stage with a single membrane (b) and a slider element (c) 
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Required model parameters have been fitted according to 

material data presented in prior research [4]. To 

determine the suitability of the design for the envisioned 

application, occurring slider motion for induced 

actuation pressures is investigated. Moreover, the effects 

of external forces are considered in steady state upon 

inflation. An overview  of the model  definition is shown 

in Fig. 2a). 

The capabilities of a single stage to exert insertion forces 

are tested by inducing a clamping contact between two 

opposing sliders and an inserted needle under a defined 

actuation pressure (clamping force of approx. 15N) and 

inducing an axial displacement in the needle (0.3mm). 

The contact between pads and needle is modelled as static 

friction with a friction coefficient of 0.8. 

Steering capabilities of two stages are investigated with 

a design which is comprised of two opposing inflatable 

membranes. An initial contact is provided between 

sliders and needle. Opposing sliders are actuated 

antagonistically in either opposite directions between 

both stages to achieve tilting of the needle or in parallel 

to enable planar translation motion. An overview of the 

investigated actuation configurations is provided in Fig. 

2b). 

RESULTS 

The response of an individual sliding element to a build-

up of actuation pressure is shown in Fig. 3a). The local 

force-deflection response and hence stiffness of the slider 

at around 2mm extension is shown in Fig. 3b). For DS30 

the stiffness per unit thickness of the system is 

substantially greater at 36.39N/mm compared to the 

DS10 and DS20 counterparts with 8.57N/mm and 

25.63N/mm respectively. The contact behavior for an 

induced needle displacement is shown in Fig. 4. The 

simulation suggests an insertion force of approx. 10N 

before loss of contact. 

The achievable motion of a two-stage system equipped 

with DS30 membranes is shown in Fig. 5. For a fixed 

distance between the stages of 10mm and a housing bore 

diameter of 4mm the system reaches approx. ±8deg of tilt 

and ±0.83mm of planar translation can be achieved. 

CONCLUSION AND DISCUSSION 

This work demonstrates the design of a novel needle 

driving system and a preliminary simulation-based 

feasibility study indicating the capabilities of the system. 

Despite the simplicity of the design, the 2d simplification 

of the mechanism indicates high system stiffness and 

driving forces. The results obtained at unit thickness 

suggest that a membrane of 6.3cm width could withstand 

the maximum force during insertion with only 1mm 

deflection. Additionally, mapping the obtained results for 

the needle insertion to two opposing semicircular 

membranes it can be anticipated that to achieve the 

required driving forces a circular membrane with a radius 

of ≈8cm is required. Given the highly scalable design, 

miniaturization is possible by varying membrane 

thickness and material to increase stiffness further. The 

presented device could provide a viable solution for 

steering needles and other surgical instruments in 

confined spaces. Further investigations will be carried 

out into the fabrication of the system and a first physical 

prototype will be built and evaluated in the context of 

percutaneous needle insertion. 

REFERENCES 

[1] Tsekos, Nikolaos V., et al. "Magnetic resonance–

compatible robotic and mechatronics systems for image-

guided interventions and rehabilitation: a review study." 

Annual review of biomedical engineering 9 (2007). 

[2] Z. He et al., “Design of a Percutaneous MRI-Guided 

Needle Robot with Soft Fluid-Driven Actuator,” IEEE 

Robot. Autom. Lett., vol. 5, no. 2, pp. 2100–2107, 2020. 

[3] Okamura, Allison M., et al. "Force modeling for needle 

insertion into soft tissue." IEEE transactions on biomedical 

engineering 51.10 (2004): 1707-1716. 

[4] Marechal, Luc, et al. "Toward a Common Framework and 

Database of Materials for Soft Robotics." Soft Robotics 

(2020). 

Figure. 2 Model definition for 2d analysis of the proposed 

mechanism (a) and two-stage mechanism deformed results for 

initial deflated state b)-I., clamped state b)-II., translated state 

b)-III. and tilted state b)-IV.  

Figure. 3 Slider displacement ����  under actuation pressure 

���� for different rubbers (a) and corresponding stiffness per 

unit thickness at 2mm extension under an external load �	
� (b)

Figure. 5 Induced needle motion in tilt ��		
�	 (a) and planar 

translation ��		
�	  (b). The configuration of the system is 

indicated above the loading phase according to Fig. 2b). 

Figure. 4 Pad displacement (a) and clamping force (b) for an 

induced needle sliding motion. The configuration of the system 

is indicated above the loading phase according to Fig. 2b). 
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INTRODUCTION

Twin-to-twin transfusion syndrome (TTTS) may occur
during identical twin pregnancies when abnormal vascu-
lar anastomoses in the monochorionic placenta result in
uneven blood flow between the fetuses. If not treated,
the risk of perinatal mortality of one or both fetuses
can exceed the 90% [1]. The most effective treatment
to recover the blood flow balance is minimally invasive
laser surgery in fetoscopy [2]. At the beginning of the
surgical treatment, the surgeon identifies the inter-fetal
membrane, which is used as a reference [3] to explore
the placenta vascular network and identify vessels to be
treated.

Limited field of view (FoV), poor visibility, high illumina-
tion variability, fetuses’ movement, and limited maneuver-
ability of the fetoscope make the membrane identification
a challenging task. This results in increased surgery
duration and risks of complications from the patients’
side, as well as mental workload from the surgeons’ side.

Recently, the Surgical Data Science (SDS) [4] commu-
nity has focused more and more on developing mosaick-
ing strategies to enhance surgeons’ vision by extending
the FoV. The literature approaches rely on instrument
tracking or image analysis (i.e., no external hardware is
required).

The work proposed by [5] integrates image processing
with information on a fetoscope tip position, tracked by
an electromagnetic tracker (EMT) to achieve rift-free
mosaicking.

Among image analysis approaches, the first work pro-
posed in [6] is based on the SIFT feature extractor for
frame registration. Given the success of the deep learn-
ing techniques in vision tasks, researchers have exploited
the potential of neural networks to extract features. In [7],
a Siamese Network based on the VGG-16 backbone
is proposed to extract vessel features combining region
detection and stable image registration. In [8], the Lucas-
Kanade algorithm was employed for frame registration
of similar frames identified using bags of visual words
based on VGG descriptors. The framework proposed
in [9] uses a controlled data augmentation strategy and
median outlier filter on estimated homography parame-
ters for robust mosaicking. Most of the work in literature
relies on a small dataset of fetoscopic images of the

Figure 1: Overview of the scene elements in the virtual environ-
ment. a is the fulcrum of rotation of the instrument. On the tip
of the sheath (b) the camera and a spot light (c) are attached.
The ex-vivo placenta image is the texture of the image plane
(d ). The particle system (e) simulates the free-floating debris.
All the elements are placed inside the amniotic volume f .

placenta acquired in-vivo (i.e., during the surgery), ex-
vivo (i.e., using placentas removed after childbirth) or
using phantoms.

The training and evaluation of deep learning ap-
proaches require ground truth data. Ground truth could
be obtained by employing a fetoscope tracker, which,
however, may not always be available. To overcome this
limitation, we propose a virtual environment for simulated
placenta exploration, starting from ex-vivo images. We
implement the virtual environment on a modern 3D game
development platform, offering the possibility to simulate
all possible scenarios of fetoscopic images (e.g., different
light conditions, amniotic fluid turbidity, insertion point,
camera pose, and particle density).

MATERIAL AND METHODS

In this preliminary study, our dataset is generated start-
ing from three ex-vivo placenta images, acquired by clin-
icians right after TTTS surgery. The virtual environment
can simulate both straight and 30 degrees fetoscope
commonly used in TTTS surgery for the posterior and
anterior placenta, respectively. An overview of the virtual
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scene is shown in Fig. 1. The chosen ex-vivo placenta
image is projected on the image plane (d ).

The fetoscope sheath (b) is modeled as a cylinder
rotating with respect to a fulcrum (i.e., the insertion point,
a). At the tip of the sheath, a virtual camera and a light
spot (c) simulates the fetoscope’s fibers-optics. Camera
and light parameters are qualitatively tuned to produce
images as similar as possible to intra-operative TTTS
video frames acquired in the clinical practice (in this work,
10 TTTS intra-operative videos are available for visual
comparison).

The virtual fetoscope is immersed in the amniotic
volume (f ), ), modeled as a cube for simplicity. The
cube is processed by a rendering pipeline to simulate
the presence of the amniotic fluid. TTTS surgery is
generally performed between the 16th and 25th weeks of
pregnancy; in this period, the free-floating particulate is
visible in the amniotic fluid. For this reason, we introduce
a particle system (i.e., Unity module for the simulation
of elementary particles, e) to simulate the particulate in
the amniotic volume. Light intensity, amount of turbidity of
the amniotic fluid, and particulate density can be changed
during the simulation.

The virtual fetoscope can be moved to simulate dif-
ferent insertion points. After the operator has chosen
the insertion point, the instrument can move freely or
following a predefined trajectory through a keyboard.
Other input controllers are allowed as well. During the
free exploration, the user can start video capture and
record the fetoscope’s positions over time; it can be
used later as a trajectory for further simulations or as
an additional ground-truth datum. The user is provided
with a small live reconstruction of the visited area at the
bottom of the screen.

To experimentally evaluate the quality of the simula-
tion, we decided to generate panorama using Homog-
raphyNet [10] trained on ex-vivo TTTS video frames
generated with our environment. We chose this network
given the promising results obtained in state of the art [9].
We computed the registration Root Mean Square Error
(RMSE) [pixels] for each frame and compared to the
ground-truth generated by the virtual environment to
evaluate the panorama reconstruction quality.

RESULTS AND DISCUSSION
The virtual environment enables us to acquire nine

videos. Each one was acquired using one of the three ex-
vivo placenta images in our dataset, different fetoscope
trajectories (i.e., free, circular and spiral) and different
configurations of the virtual environment (i.e., different
light intensity, turbidity of the amniotic fluid, density of
free particulate) for 120 seconds (750 frames at 25 fps).

Preliminary results using the HomographyNet trained
model on simulated data achieved an average RMSE of
4.18 pixels. An example of the reconstructed panorama
is shown in Fig. 2.

Future work will include an in-depth evaluation through
clinician questionnaires. The virtual environment will be
enriched implementing the following features: (i) optical

Figure 2: Example panorama reconstruction on video gener-
ated from virtual environment using HomographyNet [10].

distortion, (ii) placenta 3D models obtained from Mag-
netic Resonance Imaging (MRI) images, (iii) placenta tex-
ture generation using GAN networks with style-transfer,
(iv) simulation of occlusions (e.g., fetuses) within the
scene. The environment will be used to conduct fur-
ther studies on more complex deep learning models for
panorama reconstruction from in-vivo images.
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INTRODUCTION 

Head and neck squamous cell carcinomas (HNSCCs) are 

the sixth most common malignancy worldwide, 

accounting for over 500,000 new cases annually. In 

addition, it has been reported to result in a high mortality 

rate of approximately 1%–2% among tumor deaths, and 

approximately 10% of the patients die within six months 
after diagnosed. Traditional assessment of HNSCC is 

done under conventional examination (COE) or 

endoscopic bright white light (BWL). Since the 

morphological characteristics of SCCs under COE or 

BWL can be subtle and potentially confused with benign 

pathologies, especially in the early stages, biopsy is 

required on all the suspicious lesions for 

histopathological diagnosis. However, malignant tissues 

are known to present altered packing density and 

orientation of its cells, which also present increased water 

and mineral content and different membrane 
permeability than normal cells. Consequently, their 

electrical characteristics are significantly different from 

those of healthy tissue. Therefore, Electrical 

Bioimpedance (EBI) sensing can be an effective method 

for on-line cancer detection. In this study, we present the 

design and evaluation of SmartProbe [1], a needle-based 

EBI sensor device for the accurate identification of 

cancerous tissues in-vivo.  

Figure. 1. The SmartProbe system. 

MATERIALS AND METHODS 

The SmartProbe [1] was created and certified for clinical 

studies on the bioimpedance characteristics of both 

pathologic and healthy tissues from the head and neck 

region. As shown in Fig. 1(A), the SmartProbe system 

includes three main components: a data acquisition and 

processing unit, a handheld connector, and a power 

isolator. A disposable Concentric Needle Electrode 

(CNE) is directly connected to the handheld connector 

for use. A pushbutton on the handheld connector allows 
the user to trigger the data collection process. The 

SmartProbe device integrates a microcontroller and a 

high precision impedance converter based on AD5933. 

The microcontroller controls the impedance converter 

and transfers the data to a connected computer for on-line 

visualization, storage and post-processing. The power 

isolator is required due to safety considerations since the 

system is designed for in-vivo use. 

When the CNE is inserted into biological tissue, the 

tissue forms a frequency-dependent electrical load on its 

tip, including the impedance of the contacting material 
under test (ZMUT) and the electrode polarization 

impedance (ZEPI). Using the measured impedance values 

directly for tissue identification can have a relatively low 

accuracy considering the electrode polarization effect 

ZEPI and the manufacturing tolerance of the CNE’s inner 

diameter Di and outer diameter Do (Fig. 1(B)). The ideal 

calibration procedure requires the measurement with 

every CNE on different concentrations of saline solutions 

to remove this bias. This is time consuming and tedious. 

Therefore, a new calibration method is proposed in this 

study allowing the operator to calibrate each CNE with 

only one saline solution of known conductivity.  
The proposed calibration process is based on statistical 

learning of training datasets measured on different 

concentrations of saline solutions. Each dataset is 

constructed by a series of impedance values measured 

from different saline solutions with known conductivity. 

These impedance values are measured using the same 

excitation frequencies, but different CNEs. 

Subsequently, principal components (PCs) of the 

covariance matrix for each dataset are calculated. Since 

the first PC can capture the maximum linear correlations 

between the features, the measured values of a new CNE 
can be calibrated by simply measuring one of the above 

saline solutions, and project this value to PC1 for 

obtaining the other estimated values. Furthermore, this 

allows computing the relationship between the material 

conductivity σ and the measured impedance value |Z|.  

To evaluate the proposed calibration method, 40 CNEs 

were randomly selected, and three repeated 

measurements were performed for each needle in 6 

different saline solutions (0.1% to 0.6% concentrations, 

2 to 11 mS/cm). Subsequently, an experimental 

evaluation of SmartProbe was performed on different 

freshly excised ex-vivo human tissues from the head and 
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neck region, including both cancerous and healthy 

tissues. The experimental setup was installed in the 

operating room of Department of Otorhinolaryngology 

and Head and Neck surgery (San Martino Hospital, 

Genoa, Italy). For each patient, the practitioner first 

opened a new CNE and plugged it to the handheld 

connector. Then, calibration in a 0.4% saline solution 

was performed. Finally, SmartProbe was used for 

collecting the impedance value of tissues, recording them 

on a database. After the tissue was resected from the 
body, the practitioner first checked the tissue type and its 

pathologic status. Then the practitioner noted down the 

tissue location and features under measurement, and then 

the bioimpedance data was collected. The practitioner 

repeated the data collection 3 times at each measurement 

site, which were marked with colored ink for subsequent 

detailed histopathological examination. Once the 

histological report was generated, the pathologic status of 

all data collected was recorded on the database.  

The data was processed by calculating the conductivity 

of the measured tissue using the described calibration 
method. Both conductivity and phase angle information 

were used for tissue classification. A descriptive statistic 

based on principal component analysis (PCA) was used 

to reduce the dimensionality of the data. Furthermore, 

statistical analysis was performed on the 2D results (one 

dimension of conductivity and one dimension of phase) 

for classification between pathologic and normal tissues. 

RESULTS 

The results of saline solution measurements in each 

excitation frequency were grouped as a dataset, and the 

PCs of every dataset were calculated. We retained only 

the maximum PC as a model for reconstructing the 

function |ZS| = f (σ) for the CNE since its contribution 

was more than 90% in all the cases. Subsequently, the 

reconstruction accuracy of the calibration method was 

evaluated by comparing the reconstructed value |ZS
*| and 

the actual measured value |ZS |. In this study, 0.4% saline 

solution was chosen for the model reconstruction, since 
it was found to have the average lowest error (< 6%). This 

error rate is low enough for this application since the EBI 

differences between tissue's pathological and healthy 

status are generally much bigger. 

The preliminary results of 10 patients are presented here, 

which includes four types of tissues from the head and 

neck region: muscle, mucosa, cartilage and salivary 

gland. In total, 586 data were collected, and each data 

includes 10 impedance modules |Zt| and 10 phase angles 

θ at 10 excitation frequencies from 10kHz to 100kHz. 

Except from 113 data whose pathologic status were not 
confirmed by the histologic report, the rest of the data 

were categorized according to the tissue type and 

pathologic status. The mean values and the standard 

deviation in different categories are shown in Fig. 2. In 

addition, the PCA method was applied for reducing the 

data dimension of both σ and θ, resulting in one 

dimension of conductivity PCA(σ) and one dimension of 

phase PCA(θ). Welch t-test was conducted to evaluate 

the statistical significance between pathological and 

normal statuses of the same tissue type. The results 

demonstrated that the tissue status of cartilage (p-value = 

0.018), muscle (p-value = 1.6e-12), and mucosa (p-value 

= 2.5e-5) can be successfully classified. However, it can 

be difficult to identify whether it is cancerous or not for 

the salivary gland tissue (p-value = 0.47). 

Figure. 2. The σ (mS/cm) and θ (rad) of four types of ex vivo 

human tissues in both pathological status and healthy status. 

CONCLUSION AND DISCUSSION 

This study presented SmartProbe, an EBI sensing system 

based on a CNE for in vivo on-line cancer detection. 
Considering the uncertainties in EBI measurements due 

to the CNE manufacturing tolerances and electrode 

polarization impedance, we proposed a calibration 

method based on statistical learning. In addition, an ex-

vivo experiment was conducted for evaluating the 

system’s capability to detect cancerous tissue. Four types 

of ex-vivo human tissues from the head and neck region, 

including both cancer and surrounding healthy tissue, 

were characterized using SmartProbe. The measured data 

was processed using dimensionality reduction and 

analyzed for tissue classification. The results show 
significant differences between pathologic and healthy 

tissues in muscle, mucosa and cartilage specimens based 

on their electrical property. These promising results 

indicate a great potential of SmartProbe in various cancer 

detection for in-vivo office-based assessments during 

routine consultations, and for intra-operative assessment 

of resection margins during surgical procedures. Future 

work will conduct the measurements with extended 

frequency range, potentially improving the detection 

capability for difficult tissue type such as salivary gland. 
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INTRODUCTION 

Successful surgical interventions depend on the 

interaction of surgeons with medical teams, technical 

artefacts, organizational challenges and dynamic patient 

conditions. The dominant paradigm in industrial and 

healthcare safety management is based on root-cause 

thinking for accident analysis and energy-barrier thinking 

for subsequent safety mitigation. These two segments of 

the safety analysis are inherently based on a linear cause-

effect reasoning [1]. Such sequential assumptions have 

received critique for not adequately describing the 

underlying complexity and dynamics of healthcare 

settings [1-2]. Therefore, non-linear safety analysis 

techniques like the Functional Resonance Analysis 

method (FRAM) and the Systems-Theoretic Process 

Analysis (STPA) gain importance [1-2]. They are both 

based on a systems-thinking approach of work systems. 

STPA is a hazard and risk analysis technique that belongs 

to a systemic causation model, called System Theoretic 

Accident Model and Processes (STAMP) [2]. The STPA 

technique treats safety as a dynamic control problem 

rather than an individual component failure. In our study, 

STPA is applied to a socio-technical work analysis of 

fetoscopic surgery during twin-to-twin transfusion 

syndrome (TTTS). TTTS is a severe complication of 

monochorionic twin pregnancies, characterized by the 

development of unbalanced chronic blood transfer from 

one twin, to the other through placental anastomoses [3].  

We suggest using STPA to complement the knowledge 

about the TTTS surgical procedure from the perspective 

of engineers that are involved in design iterations of 

novel fetoscopic systems on the one hand with the expert 

knowledge provided by expert fetal surgeons on the other 

hand. Such comparison is also known as a Work-as-

Imagined (WAI, here thus imagined by the engineers) vs. 

Work-as-Done (WAD, provided by the surgeons’ 

practical expertise) [1]. This approach maximally takes 

into account the challenges experienced during the 

surgical procedure and transforms those into a 

methodical design aid to support the development of 

future fetoscope designs and design iterations. The 

analysis also provides systematic WAD knowledge 

transfer from surgeons to engineers. STPA has recently 

gained attention in relation to healthcare safety research 

[4-5], which included a WAD perspective, although not 

explicitly labeled as such.  

MATERIALS AND METHODS 

Data was gathered from 4 engineers (19 hours of 

interviews), whereas the WAD perspective was provided 

by an interview with one fetal surgeon (2 hours) and 

previous literature that specifically described operational 

guidelines, techniques and challenges of TTTS surgery 

[6-7], previously gathered by a number of fetal surgeons 

from two different hospitals. The scope of the analysis 

and interviews was to map the essential control elements 

(human & technological) of the TTTS procedure. Both 

HCS and unsafe control actions (see below) were based 

on the interviews. Engineers provided validation, 

whereas the surgeon complemented the engineers’ HCS. 

The method follows the several steps of an STPA 

analysis, based on the three main principles of the 

STAMP causation model [2]: (i) safety is maintained by 

control constraints between human and technical 

controllers (system elements); (ii) the control constraints 

can be presented in a hierarchical structure with control 

& feedback loops between controllers of a work system 

(see Fig 1), and; (iii) automated/technical controllers 

have underlying mental models that can influence these 

control & feedback loops. From these steps emerges a 

functional representation of the work system. STPA 

subsequently produces a systematic analysis of how a set 

of previously defined system constraints can be violated. 

Any unsafe scenario can subsequently be identified and 

mitigated.  

We applied these steps to the generic goals of fetoscopic 

surgery and produced a first generic hierarchical control 

structure (HCS) (Fig. 1). Such an HCS essentially maps 

the relations between human and technical system 

elements in terms of control action and feedback loops. 

Subsequently, we produced an HCS 2 (Fig. 2) where 

these generic controls and feedbacks are replaced by the 

physical actuators and sensors during current use of the 

fetoscope. Thirdly, during the interviews with the 

engineers suggestions for augmented actuator and sensor 

technologies were collected as topics for future design 

iterations to increase control and feedback accuracy in 

fetoscopic laser coagulation tasks. These were collected 

in HCS 3. Subsequently we analyzed (i) all unsafe control 
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actions generically defined by HCS 1; (ii) we 

subsequently assessed if HCS 2 meets the expected safety 

constraints, and (iii); if,  by surgeon’s expert knowledge, 

HCS 3 solutions are needed to increase mission success  

RESULTS 

One part of the multi-step STPA approach is explained 

here for exemplary purposes. Figure 1 shows a small and 

simplified excerpt from HCS 1 with generic control 

actions for some activities performed during a fetoscopic 

laser coagulation surgery. 

Figure 1: STAMP Hierarchical Control Structure - generic 

This excerpt focuses on: (i) how the fetal endoscopist 

manipulates the fetoscope to reach the target by applying 

longitudinal (zoom-in & out) and lateral control with a 

certain degree of accuracy supported by corresponding 

feedbacks, such as receiving position update from 

fetoscope tip, and (ii) on ablation activation and 

feedback. In Figure 2, one can find a an aggregated HCS 

2+3: including the representation of the current actuators 

and sensors involved in a fetoscopic procedure (HCS 2, 

black), aggregated with future engineering solutions 

(HCS 3, red).  

Figure 2: STAMP Hierarchical Control Structure – actuators 

and sensors 

In figure 2, generic feedbacks from figure 1 like position 

feedbacks are now replaced by their physical equivalents 

such as direct camera image, proprioceptic feedback, 

and the like. Further STPA steps as described above were 

applied to look at how such controls can fulfill safety 

constraints in isolation and on systems level. The 

interviewed surgeon highlighted, from personal 

experience, that a TTTS with an anterior placenta 

provides the most challenging condition to reach the 

vascular equator with a correct laser fiber inclination, 

previously discussed in the literature [6-7]. Although 

several techniques exist that take into account varying 

surgical practices, fetoscopic instruments and altered 

patient positions, surgeons are looking for technical 

improvement to treat the most extreme anterior placenta 

conditions [6-7]. Therefore, the generic control actions of 

longitudinal and lateral control (HCS1) are currently not 

met with the current instrumentation for all vascular 

equators in the case of an anterior placenta (HCS2). In 

STPA language this creates an unsafe control action. 

Because sufficient control is not provided to achieve 

mission success under all circumstances, the interviewed 

surgeon assigned the highest priority to the flexible 

fetoscope (HCS 3) engineering suggestion. Note that this 

specific design iteration produces systemic influences on 

other control actions in the HCS (not depicted here for 

space limitations). These include increased challenges 

for sterilizability of the fetoscope tip, transformation of 

coordination practice with the sonographer, unlearning 

old while acquiring new fetoscope manipulation skills, 

and the design of a contingency retraction mode to align 

fetoscope shaft and tip in case of emergency retraction.  

CONCLUSION AND DISCUSSION 

Although we only presented one (highly prioritized) 

example from the STPA analysis, this result shows a 

system level constraint violation (being able to treat a 
maximal variety of vascular equator-placenta 

configurations) in the form of an unsafe control action. 

This can be addressed in future designs, but new systemic 

effects (both positive and negative) have been identified 

and need to be iteratively re-assessed to define new safety 

requirements (named control constraints in STPA). We 

believe that STPA as a safety analysis technique, in 

combination with WAD as a perspective for knowledge 

elicitation is a powerful combination for engineers as a 

design requirement and verification support to resolve 

remaining threats to patient safety and mission success. 
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INTRODUCTION 

Soft robots, when compared to conventional hard robots, 

because of their soft and compliant structure, have the ad-

vantage of being safe during Human-Robot Interaction 

(HRI). This property makes soft robots a better choice for 
Minimally Invasive Surgery (MIS), reducing the risk of 

damage when in contact with vital organs [1], [2]. On the 

other hand, soft robotics structures usually have an infi-

nite number of degrees of freedom, making propriocep-

tion a challenging task. Apart from proprioception, a ro-

bot should also be able to physically interact with the en-

vironment in a meaningful way, making exteroception 

similarly important.  

For exteroception and proprioception, resistive and ca-

pacitive sensing techniques have been applied individu-

ally [3]–[6]. Combinations of different sensing technolo-
gies have also been used for the detection of different 

stimuli [7]–[11]. However, the concept of multi-modality 

within one sensor skin is yet to be adequately explored. 

Recently there has been a great interest in using machine 

learning algorithms for proprioception and exteroception 

in soft robots [12], [13]. 

We present a silicone-based capacitive e-skin that can be 

integrated with the outside of a soft robot, enabling it to 

have a sense of its pose and to interact with the environ-

ment as well. The data collected from the skin is used to 

train a Machine Learning (ML) regression model to pre-

dict the applied global stretch and local indentation. 

MATERIALS AND METHODS 

We fabricated the e-skin using Ecoflex 00-30. Our e-skin 

is made up of 4 silicone layers encapsulating 3 carbon 

grease terminal layers in between them. Fig. 1 shows an 

exploded view of the e-skin. The experimental setup for 
stretching was designed by attaching a SUNCOR stepper 

motor to an M8 lead screw. The clamps to hold the e-skin 

during stretching were 3D printed. 

Figure 1. The e-skin. The x and y terminals are straight lanes, 
perpendicular to each other; the ground is another layer with a 
grid of perpendicular terminals. 

To measure the capacitance of the skin, and integrated 

circuit CAV 424 was used. CAV 424 measures the ca-

pacitance and converts it to the voltage that is then read 

by an Arduino. CAV 424 was connected to the 10 x-ter-

minals and 10 y-terminals through a couple of 16-1 mul-

tiplexers. The complete experimental setup is shown in 

Fig. 2. 

Figure 2. Shows the experimental setup for stretching the e-
skin. Wires are connected from the e-skin terminals to the CAV 
424 via multiplexers.  

Data was collected by stretching the e-skin from stretch, 

i.e. λ=1 to λ =1.2475 with an increment of 5mm. A spher-

ical indenter of 5mm diameter was 3D printed, and in-

dentations of 5mm and 10mm at node (6,6) were applied 
for each stretch. 

In work presented here, we train several machine learn-

ing algorithms to predict the indentation and the stretch 

corresponding to 20 input capacitance values. We col-

lected 4 samples for all 15 states of different stretches and 

indentations. This data consisting of 60 samples, was 

used to train the machine learning algorithms. The data 

was stratified and split, resulting in 45/15 of 60 samples 

for training/testing. Linear Regression, K Neighbours 

Regressor and Linear SVR were trained using the train-

ing data. After training, predictions were made using the 
test data inputs, and these predictions were compared 

with actual outputs. To analyse the results, we calculated 

the Root Mean Squared Error and the Coefficient of De-

termination. 

RESULTS 

The Root Mean Squared Error calculated for Linear Re-
gression, K Neighbour Regressor, and Linear SVR meth-

ods are 0.3343, 3.5 and 5.11, respectively. The coeffi-
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cient of determination for the above-mentioned algo-

rithms were found to be 0.9789, 0.1915, and -1.2582. The 

plots of predicted stretch and indentation using linear re-

gression on the test data are shown in Fig. 3 and 4.

Figure 3. Shows the actual stretch from test data and the pre-
dicted stretch from the trained linear regression model. 

Figure 4. Shows the actual indent from test data and the pre-
dicted indent from the trained linear regression model. 

CONCLUSION AND DISCUSSION 

We establish that machine learning techniques can be 
used to predict the global stretch as well as local indenta-

tion when applied simultaneously to a soft capacitive sen-

sor skin. We were able to conclude that with the small 

data set we used; the linear regression model gives better 

results as compared to the other algorithms used. We can 

see in Fig. 3 that the predictions are accurate because ca-

pacitance and stretch are linearly related to each other 

[14]. Fig. 4 shows discrepancies in the actual and pre-

dicted values. The reason is that initially, capacitance 

changes linearly with indentation and then the curve sat-

urates. The plot suggests that for indentation, we might 

have to employ a non-linear model for more accurate re-
sults.  Our future work will explore enhancing the multi-

modality of capacitive e-skin by applying machine learn-

ing for predicting applied forces and localization of the 

force being applied in addition to the strains in the capac-

itive skin. Further, we will explore the use of our e-skin 

in a soft robot tool, such as the STIFF-FLOP robot arm, 

for advanced interaction with soft tissue during MIS. 
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INTRODUCTION

Robust estimation and compensation of semi-periodic
physiological movements play a key role in developments
in the current robot-assisted surgery context as accurate
motion tracking allows for more complex and less inva-
sive procedures [1]. A particularly relevant case is the
one where a robot-assisted bypass procedure of the heart
(RACAB) is predominantly performed through keyholes
with the exception of an incision the surgeon uses in or-
der to stitch cardiac arteries. Motion-compensation con-
tributes to rendering this incision obsolete as it would
allow the surgeon to stitch through the robot (fig. 1).

Figure 1: Thorax see-through during RACAB [2].

As opposed to the well-established strategies that exploit
the periodicity of these motions, the possibility of the
extraction of the electrocardiogram’s (ECG) predictive
information is rarely considered. As the ECG captures
the same electrical heart activity that is responsible for
muscle twitches and, in turn, the movement of the heart,
a close physiological link between the two is in place.
The ECG signal allows to anticipate changes of heart
rate and anomalies such as skipped heart beats. In this
work, a heart displacement model is used in combina-
tion with an unscented Kalman filter (UKF) to predict
the heart motion. Principles of a strategy which aims
to exploit the electrocardiogram (ECG) signal are then
brought forward and embedded into the estimation pro-
cedure. After showing results of the system’s validation,
appropriate conclusions are drawn.

HEART MODEL
In the considered scenario, the distance between a
robotic instrument and the heart surface is measured
in one dimension. By using a state estimator (the UKF)
and leveraging the quasi-periodic nature of heart move-
ment, it is possible to reduce the sensor noise and, most
importantly, to predict the heart movement and regu-
late the robot accordingly. The UKF requires a model
of the heart movement. This discrete-time dynamical
model makes use of the fact that a periodic signal is de-
composable into a sum of sines and a constant C. For
the sake of clarity and without loss of generality, only
two components are taken into account:

zk = Ck +a1,k sin(ωkt+φ1,k)+a2,k sin(2ωkt+φ2,k) (1)

Considering computational transparency, the time de-
pendence is desirably implicit. The system update and
measurement equations are therefore formulated as fol-
lows [3]:

C
a1
a2
ω0
θ1
θ2


k+1

=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 ∆t 1 0
0 0 0 2∆t 0 1




C
a1
a2
ω0
θ1
θ2


k

(2)

zk = Ck + a1,k sin θ1,k + a2,k sin θ2,k (3)

SENSOR FUSION
The filter compares the measured displacement ẑk with
the predicted displacement zk computed from the cur-
rent state estimate xk through eq. (3). In order to take
the ECG signal into account in the estimation, the UKF
is expanded with a second output, a generated triangu-
lar pulse. A similar signal is composed making use of
the measured ECG as follows.

∗This work is part of the KUL C3 project BIOSERV
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Figure 2: ECG signal (black) with generated pulse (blue).
QRS peak detection is denoted by the red circle.

Generated signal

The signal generated in association with the ECG curve
is a triangular pulse train with pulse placement once ev-
ery period. One of the most prominent characteristics
of the ECG signal is used as reference mark: the peak in
the QRS complex (fig. 2). Upon detection of this peak,
a triangular pulse of fixed shape is generated. This large
peak coincides with ventricular polarisation, a jump in
the ventricular action potential. Subsequent depolarisa-
tion is in turn closely correlated with muscle twitch and
concomitant heart movement. In short, the QRS com-
plex designates upcoming heart movement. For simplic-
ity, a constant time difference between ECG peak and
heart movement peak of ∆Tecg,p = 400 ms is assumed.
As a result the peaks occur before the rising edges of the
displacement, which is physiologically justifiable [4][5].

Simulation

The UKF measurement noise covariance matrix contains
two distinct parameters: the displacement and ECG sig-
nal noise variances. These are used to set the weight
accredited to either signal. A heart displacement signal
embodying process and measurement noise is generated
along with its triangular pulses (see fig. 3). In a 3 s
window the angular frequency increases by 3 rad/s. The
resulting estimated heart rate is shown in fig. 4 (bot-
tom) along with the real values and the conventionally
estimated one without sensor fusion. When assimila-
tion with the ECG signal finds place, the lagging esti-
mation is updated towards a more accurate value. For
this particular simulation involving non-negligible mea-
surement noise, the resulting displacement and velocity
estimations are respectively 35 and 50% better in terms
of mean squared errors (MSE). The corresponding error
signal for either estimation is also given by fig. 4 (top
and middle respectively).

Figure 3: Generated displacement signal (full) with corre-
sponding triangular pulses (dashed).

DISCUSSION AND CONCLUSION
Because in this exemplary simulation only one associa-
tion is made in every heart period, the estimated sig-

nal and the estimation errors tend to converge to the
conventionally estimated ones after a while. This is a
consequence of maintaining the introduced model which
presumes a constant heart rate. More convergence to-
wards the actual states can be achieved by recognising
more parts of the signal through e.g. cross-correlation
and making the impact of the individual elements of the
generated signal smaller. I.e. by increasing the amount
of elements (here triangles), decreasing their width and
increasing the ECG signal measurement noise r0,ECG.
The generated triangular pulses spread out discrete-time
information – the location of the next peak – over a range
of time steps. This strategy therefore introduces a larger
error with increasing pulse width which consequently
manifests itself in a trade-off between suppressing this
error and accreditation of the ECG information. The
trade-off is tuned by r0,ECG and the pulse shape. For
signals with rapidly varying heart rates, narrow pulses
are desired. In conclusion: the detection of a character-
istic shape in the ECG signal along with a physiological
assumption allow for predictive information to be used to
increase UKF estimation accuracy. These findings sug-
gest that future developments involve a more scrupulous
ECG-displacement model with the aim of engendering a
more continuous impact of the ECG measurement.

Figure 4: Position (top) and velocity (middle) errors be-
tween real and estimated values along with their heart rates
(bottom). The conventionally estimated heart rates (yellow)
are plotted against the ones obtained through sensor fusion
(red) with the QRS peak times (grey vertical).
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INTRODUCTION 
Teleoperated robot-assisted minimally invasive surgery 
(RAMIS) is growing in popularity, but it is not clear how 
it is best to train robotic surgeons. Motor learning 
theories define skill acquisition either as an improvement 
in performance relative to previous performance levels or 
as the acquisition of completely novel abilities [1]. An 
important indicator of skill acquisition is an improvement 
in the speed-accuracy trade-off [2]. Another form of 
learning is adaptation, in which participants improve 
their performance in response to altered conditions, such 
as perturbing forces [1]. Different processes enable motor 
learning. For example, in error-based learning, the 
sensorimotor system estimates the gradient of the error 
between the desired outcome of a movement and the 
actual outcome. This error is then used in the tuning of 
motor commands in the following movement [3].  
Recent findings in motor learning propose methods to 
affect learning that may be used to improve surgical skill 
acquisition. However, extrapolating simple adaptation 
mechanisms to the acquisition of surgical skill is not 
trivial. Therefore, we first need to deepen our 
understanding of human motor control in complex 
surgical tasks. 
In this study we investigated how participants learned to 
perform a robotic surgical pattern-cutting task, and how 
external force perturbations affected their learning. In our 
experiment, the participants cut circles drawn on gauze, 
and were exposed to perturbations that pushed their hand 
in the radial direction. Since the desired path in this task 
was the drawn circle, such perturbations increased the 
error between the desired movement and the actual 
movement. We hypothesized that the motor system 
would adjust motor commands and reduce error [3]. This 
may result in greater improvements in performance by 
participants who trained with the perturbations, 
compared to those who trained without them.  

MATERIALS AND METHODS 
The participants in this study performed a surgical 
pattern-cutting task using the da Vinci Research Kit 
(dVRK). The participants used their right hand to control 
curved scissors and cut a 5cm diameter circle drawn on a 
non-woven gauze (Fig. 1(a)). 
As a first step towards understanding the effect of 
perturbing forces on the hand, we applied force 

perturbations using the right Master Tool Manipulator 
(MTM), such that a planar radial force was applied on the 
participant's hand (Fig.1(b)-(c)) – away from the center 
of the circle and toward the center, alternatingly: 

(1) 𝒇𝒇
→
𝑀𝑀 = 𝐴𝐴[ 𝑥𝑥𝑃𝑃

�𝑥𝑥𝑃𝑃
2+𝑦𝑦𝑃𝑃

2
, 𝑦𝑦𝑃𝑃

�𝑥𝑥𝑃𝑃
2+𝑦𝑦𝑃𝑃

2
, 0], 

where 𝑥𝑥𝑃𝑃 and 𝑦𝑦𝑃𝑃 are the x and y coordinates of the tip of 
the right Patient Side Manipulator (PSM), relative to the 
center of the circle, and A is the amplitude of the force.  

Fig. 1 The pattern-cutting task. (a) The task board and the two 
PSM tools (right – curved scissors, left – large needle driver). 
(b) The MTMs. (c) The circle; the position of the right PSM's 

tip, 𝒙𝒙��⃗ 𝑃𝑃 (blue); the force applied on the participant's hand, 𝒇𝒇
→
𝑀𝑀 

(red); and the base reference frame (yellow). 

The participants were divided into two groups: (1) 1Hz 
periodic perturbations, and (2) control – no perturbations. 
Each participant performed 24 consecutive trials: 
 Baseline (one trial – identical for both groups): no

perturbations – 𝐴𝐴 =  0.
 Training (20 trials): force perturbations according

to the condition group – 𝐴𝐴 = sin(2𝜋𝜋𝜋𝜋) for the 1Hz
group, and  𝐴𝐴 =  0 for the control group.

 Post training (3 trials – identical for both groups):
one trial without perturbations, one trial with 1Hz
periodic perturbations, and one trial with nonspecific 
perturbations (𝐴𝐴 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝜋𝜋𝜋𝜋)5

1
√5

;  𝑓𝑓~𝑈𝑈[0.3𝐻𝐻𝐻𝐻, 1𝐻𝐻𝐻𝐻]). 
The last two trials of the experiment were included to 
allow us to test the effect of training on the resistance to 
perturbations, but we will not elaborate on this point in 
this abstract. Here we present a preliminary analysis of 
the first 22 trials of 10 participants (five per group) using 
two basic metrics: task time and total error. The task time 
is the time elapsed between the initial contact of one of 
the tools with the gauze, and the moment the circle was 
completely removed from the gauze.  To calculate the 
total error, we scanned the cut circles and used a custom-
written image processing algorithm (MATLAB) to detect 
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Fig. 2 Example of total error calculation. (a) The cut circle. (b) 
The circle with marked error areas. 

the error areas (Fig. 2). These are areas in which the 
cutting was not on the line (outside or inside the circle). 
The algorithm then counted the number of pixels in these 
areas.  

RESULTS 
Fig. 3 shows the scissors’ path when the participant cut 
the circle. The deviations from the circle in Fig. 3(b) are 
more prominent than those in Fig. 3(a), showing that the 
perturbations affect the scissors’ path. 

Fig. 3 Examples of the recorded position of the scissors. (a) a 
baseline trial – without perturbations, and (b) the same 
participant’s first training trial with 1Hz perturbations. 

Fig. 4 shows the total time as a function of total error of 
the participants in the control (a) and the 1Hz (b) groups. 
Lower values represent smaller errors and shorter 
completion times and hence better performances. The 
trends of the dashed lines, drawn between trials 1 
(baseline) and 22 (first post training), are towards the 
lower left corner in both graphs. This indicates that the 
participants in both groups improved their performance.  

DISCUSSION AND CONCLUSIONS 
We showed a preliminary analysis of 10 participants. 
Due to the large variability between the participants, our 
current data are not sufficient for statistical testing 
whether participants who trained with the perturbations 
had a greater improvement. However, we learned 
important lessons about the protocol. For example, some 
of the metrics varied a lot between trials, and therefore 
one baseline or post-training trial is not sufficient. 
Our analysis highlights the different improvement paths 
in the time-error space – participants improved in what 
they had difficulty with. Participants who started with 
long task times improved the task time during training 
(Subject 5). Participants who started with both large 
errors and long task times improved in both (Subject 6). 
Another important result is the improvement of 
participants in the 1Hz group. Previous studies showed 

Fig. 4 Total time vs. total error. The markers show the total time 
vs. the total error in each of the trials, each color represents a 
participant. We drew a dashed line between trial 1 (baseline) 
and trial 22 (first post training trial –without perturbations). (a) 
Control group. (b) 1Hz periodic perturbations group. 

that participants do not adapt to time varying 
perturbations [4]. Although the motor system of 
participants in the 1Hz group may not adapt to the 
periodic perturbation, they did develop strategies to deal 
with it and to learn how to perform the task better. We 
are currently working on additional analyses that will 
shed light on the processes that enabled this learning.  
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INTRODUCTION 
For years, robotic laparoscopic surgery has motivated 
research and initiatives with the development of robotic 
systems offering different kind of solutions, being 
Bitrack a new option. At present the market is dominated 
by DaVinci, which has become a benchmark in this 
speciality. Laparoscopic robots offer precision and 
accessibility since their instruments are endowed with 3 
DoF, for their orientation, which are missing in standard 
laparoscopy. This paper presents the Bitrack system, 
which is a new laparoscopic surgical robot, designed at 
UPC, and currently undergoing the process of 
certification by a spin-off created for its exploitation, 
RSS. This new robot aims to obtain the same benefits and 
accuracy as the current benchmark but overcoming some 
dependencies that current robotic surgery poses. Many 
reports on studies that evaluate the contribution of 
robotics do not doubt on the improvements achieved with 
the use of robots in what refers to surgical quality and that 
more complex surgeries can be addressed than those 
performed by laparoscopy [1, 2]. The Bitrack system 
apart from these clear contributions of robotics also 
provides the concept of hybrid surgery. This concept 
implies the capability of performing an intervention 
alternating standard laparoscopy with other robot assisted 
phases according to the needs in each stage of the 
procedure. This performance has been achieved thanks to 
the Bitrack friendly design which allows a quick 
interchange of robotized instruments by their manual 
counterparts, less than a minute each, using the same 
conventional trocar. This paper presents the robot 
architecture and the experimental results achieved with 
the operational prototype.  

ARCHITECTURE 
Bitrack has been conceived aiming to achieve an easy and 
quick set-up by providing just the minimum redundancy 
necessary to avoid collisions between the four arms, 
fig.1. Redundancy and collaborative control are 
necessary for and interactive human-robot system [3]. 
However, a high degree of redundancy generates a too 
high redundant number of configurations.  The challenge 
has been defining a kinematic architecture that optimizes 
the compromise between collision avoidance and 
intuitiveness in the manual guidance along the setting-up 
of the operational work space.  
Being the set-up a manual operation, that is, the insertion 
of the four surgical instruments into the corresponding 
trocars by means of gestural movements made by the 
medical staff, this operation should be as easy and 
friendly as possible. A redundant degree of freedom 
implies unidimensional pose alternatives, which is 
intuitive for a human. More degrees of redundancy 

involve a movement with higher dimensional pose 
alternatives, but not so evident for manual operation. 
The Bitrack system, fig.1, consists of a four-arms robot 
mounted on a column, which is provided with a vertical 
linear DoF. Each arm can pivot around the column 
independently from the others. The arms, with two differ-
rent architectures are placed respectively in two levels.  

 

 

 

 

 

 

Fig.1. The Bitrack system  

All the arms operate with an elbow outside configuration, 
but the two upper arms have a SCARA type architecture 
to avoid interferences with those below. These two 
architectures are conceived to be able to operate in a 
quasi-coincident work space minimizing interference 
between the four arms. The upper arms can operate 
internally or externally with respect to the lower arms and 
can be used indistinctly for camera guidance or as 
auxiliary arm. The lower arms are the operational ones. 
Fig.2 show the kinematics of the two types of arms.  

 
Figure. 2. Kinematics with indication of the DoF of the two 
kind of arms (B and C) 
 
The DoF of the lower arms are three rotations: W0 around 
the column axis and W1 and W2 which allow the wrist 
A(xA, yA, yA) to reach any position in the working space. 
W3, the fourth joint adds a degree of redundancy allows 
reaching the target position in different orientations and 
thus optimize the shared workspace by shifting the other 
joints conveniently. The wrist supports the instrument (I), 
which movement is restricted as it pivots over the trocar 
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T(xT, yT, zT). Once in the target position, W4 and W5 
provide the orientation compatible with the trocar.  
The difficulty to control the coordinates of the instrument 
tip I(xI, yI, zI) compatible with the intermediate point T, 
the trocar, requires knowing its position. DaVinci solves 
this problem by subjecting the trocar with active joints. 
Doing this way, the trocar keeps steady all along the 
intervention and thus not posing a problem to the 
kinematics computation. In the Bitrack system, to ensure 
its continuous adaptation to the patient and transient 
variations in gas pressure in the abdominal cavity and at 
the same time facilitate the set-up, these two DoF are 
passive and therefore they do not force the movement of 
the operator who can smoothly insert the instrument. By 
freeing the trocar, its position becomes a variable, but the 
Bitrack system continuously computes its position with 
enough precision. The free movement of the trocar with 
respect to the arm, although requiring its computation to 
control teleoperation, avoids strains on the abdominal 
surface that can produce bruising and also gas leaks 
during the procedure. In addition, the Bitrack architecture 
enables the use of conventional trocars and thus the 
possibility of changing from robotic surgery to standard 
laparoscopy at any time during an intervention.    
The architecture of the upper arms, also shown in fig. 2, 
has no redundancy and joint W3 is changed from angular 
to linear, a vertical displacement to minimize volume 
occupancy. The lower arms, with redundancy, are those 
that avoid collision with the upper ones. A simulation of 
this architecture, Fig. 3, has allowed modelling the 
working volume that show an accessibility for each 
instrument of about a 35x45x55 cm spheroid.  

     

RESULTS AND DISCUSION 
With this architecture, the Bitrack system becomes very 
versatile and offers an easy set-up process having 
reduced as much as possible the redundancies that avoid 
collisions. Instead of the multiple redundant DoFs of 
DaVinci, which provide more configurations free of 
collision in broader spaces, Bitrack has only one 
redundant DoF for each lower arm, in addition to the 
common DoF for the Z movement of the column that 
supports the four arms. However, in the set-up, when the 
surgeon or medical staff should take decisions on 
movements dealing with redundancy of the arms, the 
additional DoFs of redundancy increase the time to reach 
an acceptable arms configuration and without 

guarantying reaching an optimal solution. The Bitrack 
architecture simplification thus results in a shorter set-up 
time, but also in a smaller occupancy in the O.R, less 
weight and less cost. From the long evaluation phase in 
the experimental operating room, with animal models 
(mini pigs), the insertion and retrieval of instruments has 
been of 1,6 minutes in average (considering that some of 
them didn’t have previous experience with Bitrack) in 
front of the 20 minutes that can be achieved with the Da 
Vinci Xi model after a training course. The quick 
interchange of instruments, together with the more 
reduced space occupancy in the OR makes the 
combination of robot and manual surgery feasible. This 
hybrid surgery allows a significant reduction in 
intervention time as many surgical tasks that do not 
require robot performance are executed quicker 
manually. Thus, the main contribution of Bitrack is not 
improving efficacy, since precision is no the problem in 
surgical robotics, but efficiency, understood as a balance 
between value and cost. 
The architecture with multiple arms on a unique column 
has been chosen in front of other solutions as, Titan or 
CMR with configuration one column - one arm, since it 
is a more compact solution that occupies less space in the 
O.R. when four arms are needed. 
The Bitrack system has been extensively tested in the 
experimental operating room Fig 4, in renal, hepatic and 
gynaecologic surgeries, as well as other less frequent 
surgeries that surgeons wanted to test, achieving a 
considerable reduction in operation time compared to 
fully robotic surgery.      

 

Figure. 4. The operational Bitrack system performing a surgery 
in the experimental Operating Theater. 
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