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Robotic surgery is one of the most appealing fields of modern robotics. With over 3 decades of
history, more than 3.800 systems installed worldwide, and over 600.000 robot-assisted interventions
conducted per year, the field of robotic surgery is well-established. Despite these impressive figures
and increasing popularity in research labs all over the world, the list of technological advances that
made it into the operating room (OR) during this last decade remains limited. Long-awaited techniques
such as 3D reconstruction, motion compensation, virtual guidance, haptic feedback, understudy in
many labs all over the planet did not make their appearance into the market yet. CRAS strives to
overcome this status-quo by strengthening the collaboration between the different research groups to
boost the efficacy and shorten the development cycle.
CRAS 2022 is the 11th edition of this successful event. Formerly labeled as a workshop, from this
10th edition onwards CRAS has graduated and will continue to move forward as a ‘conference’.
The 11th edition of CRAS will take place from April 25-27, 2022, at Centro Congressi Federico II in
Napoli, Italy. Further information about the current health emergency due to the COVID-19 pandemic
will be provided on this website.

CRAS 2022 Support
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Venue

CRAS 2022 was held in Centro Congressi Federico II, Via Partenope 36, Napoli, Italy. The
metropolitan city of Napoli can be reached in several ways.

About Napoli
The Province of Napoli (Naples) is a magical place

where colors, flavors, culture, and history are intertwined
in a charming mix of knowledge, joy, and fun. The area is
loomed over by Mt. Vesuvius and overlooks a marvelous
bay, whose beauty has served as driving inspiration for
many an artist. The best characteristic of Napoli is that
it has still held on to much of its character and old-world
charm. Layers of history are visible as you wander Napoli’s
narrow, cobbled streets, dipping in and out of the many bars,
restaurants, and galleries started by the new generation of
entrepreneurs, chefs, and artists reinvigorating the city once

again. Of course, it also has the advantage of having one of the most stunning backdrops in the world.
With Vesuvius to the east, the ancient port of Pozzuoli to the west, and the timeless islands of Is-
chia, Procida, and Capri nestled in the glittering bay, it’s no wonder the Romans nicknamed the area
Campania Felix – the happy land.
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Program

In this joint conference, all science and engineering presentations from CRAS were embedded into
closely related medically oriented sessions. The session topics included:

- Minimally invasive surgery - Health Technology Assessment (HTA)
- Robotic surgery - High energy surgical devices
- Surgical staplers and suturing - Surgical training
- Trauma and resuscitation - Tracers, surgical guidance and augmented reality
- Endoscopy and endoscopic surgery - Transplantation and regenerative medicine
- Microsurgery - ”Low cost" technologies

- Endovascular surgery - New technologies, novel methods and
future applications

- Rehabilitation and enhanced recovery
after surgery

- New technologies demonstrations and
competition

- Imaging and diagnosis

For details on the CRAS+SPIGC 2022 conference program, please refer to CRAS website
https://cras-eu.org/program-2/.

Open-Access License Information

All articles included in these proceedings are published as open-access publication under the “Creative
Commons Attribution 4.0 International” license.

This means that the materials included here can be shared and adapted for any purpose. How-
ever, you must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you
or your use.

For more details on the “Creative Commons Attribution 4.0 International” license, please refer to:
https://creativecommons.org/licenses/by/4.0/
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Robot Assisted Electrical Impedance Scanning for tissue detection and imaging

Zhuoqi Cheng, Thiusius Rajeeth Savarimuthu

Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, 5230 Odense, Denmark

INTRODUCTION

Nowadays Robotic assisted Minimally Invasive Surgery
(RMIS) is regularly exploited for various medical treat-
ments. During RMIS, it is often challenging for surgeons
to detect critical tissue types in the field of view. Partic-
ularly, the clinically available RMIS systems have very
limited capability in localizing critical subsurface tissues
such as early stage cancer, lymph nodes and blood vessels.
External sensing probes, such as ultrasound transducer
or palpation probes are thus developed to assist in this
task. Since different tissue types can have very different
electrical characteristics, Electrical Bio-Impedance (EBI)
sensing technology is integrated to the bipolar forceps
of RMIS system to provide real-time and on-site tissue
identification [1]. However, because of the large contact
impedance, the bipolar EBI measurement system is very
sensitive to the pressing depth of the forceps, which is very
difficult to control accurately. Also, the bipolar sensing
method has concentrated sensitivity about the forceps
tips, constraining its sensing capability and performance.
To overcome these limitations, an improved robotic EBI
sensing system based on a tripolar configuration, named
Robot Assisted Electrical Impedance Scanning (RAEIS),
is developed. In addition to accurate tissue identifica-
tion [2], the new system is able to perform flexible,
autonomous scanning, image non-homogeneous tissue re-
gion and potentially detect subsurface critical tissue.

MATERIALS AND METHODS

A. Tripolar sensing configuration

The utilized tripolar configuration is constructed by one
current source electrode (CSE), one voltage measurement
electrode (VME), and one ground electrode (GND). Ex-
citation current 𝐼 is injected into the tissue via the CSE at
point 𝐴. If the tissue under measurement is homogeneous,
the current flow disperses from the source point radially
into the tissue. The tissue surface is assumed to be flat
and the tissue conductivity is 𝜎. The electric potential at
a position 𝑀 on the tissue surface can be calculated as

𝑉𝑀 =
𝐼

2𝜋𝜎
( 1
𝑑
− 1
𝑟0
) (1)

where 𝑑 represents the distance of |AM|. 𝑟0 is the equiv-
alent radius of CSE and it is difficult to obtain. Thus,
differential voltage is used by using the VME to measure
the electric potential at 2 different positions 𝑀 and 𝑁 . By
this means, the conductivity of tissue can be calculated as

Fig. 1: Modeling the tripolar configuration based on two
robotic instruments when the sensing is conducted on
homogeneous material (A) and double layer material (B).

Eq. (2), where Δ𝑑 denotes the distance of |MN|.

𝜎 =
𝐼

2𝜋𝑉𝑀𝑁
( 1
𝑑
− 1
𝑑 + Δ𝑑

) (2)

Assuming that the material under measurement has a
superficial layer of material 𝜎1 and a subsurface layer of
material 𝜎2 as shown in Fig. 1(B), a part of the current
reaching the interface between 2 materials would reflect.
The intensity of the reflected current is reduced by a factor
𝑘 = 𝜎1−𝜎2

𝜎1+𝜎2
. Given the thickness of the top layer as ℎ, the

voltage difference between M and N can be calculated as:

𝑉∗
𝑀𝑁 =

𝐼

2𝜋𝜎1

[
Δ𝑑
𝑑 · Δ𝑑 + 2

∞∑︁
𝑛=1

(
𝑘𝑛√︁

𝑑2 + (2𝑛ℎ)2

− 𝑘𝑛√︁
(𝑑 + Δ𝑑)2 + (2𝑛ℎ)2

)] (3)

By substituting 𝑉𝑀𝑁 in Eq.(2) with Eq.(3), the calcu-
lated conductivity is a function of 𝑑, and it can reflect
the present of the subsurface tissue. For this, an artificial
neural network (𝐴𝑁𝑁) is used. The 𝐴𝑁𝑁 structure is
designed as a simple multilayer perceptrons with one
hidden layer. The 𝜎(𝑑) values acquired at a position are
inputted to the ANN. The final layer consists of a single
neuron with a Sigmoid activation to output a likelihood
value between 0 and 1.

The proposed system can be implemented on most ex-
isting robotic systems for RMIS. Two independent robotic
instruments which are used for electrisurgery are used as
the CSE and VME. A big GND electrode is attached on
the tissue and relatively far from the measurement site.
Also, the system requires to use an impedance spectro-
scope for current excitation and voltage measurement.

B. Scanning strategy: grid scanning v.s. active search
The RAEIS system can sense the electrical property of a

small region for each measurement. To inspect a relatively
big area, 2 scanning methods are developed including grid

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 10



Fig. 2: (A) The water tank experimental setup; (B) Position
of the metal object for the experiment; and (C) Results of
grid scanning (left) and 𝐴𝑆 setting (right).

scanning and active search (𝐴𝑆). Specifically, the grid
scanning is based on a 2D rectangle mesh over the user-
defined area and sampling density. The CSE is controlled
to every vertex of the grid and then the VME performs
the scanning along the X+ direction. Inspired by [3], the
𝐴𝑆 method aims to increase the sampling number where
the target tissue is more likely to present or where sensing
information is lacking, and reduce the sampling priority
in the region of lower likelihood and higher certainty. The
𝐴𝑆 method uses a Gaussian Process (𝐺𝑃) to estimate the
likelihood distribution of the searching region. Then, a
Bayesian optimizer is used for determining the subsequent
sensing position automatically.

C. Experiment and results
Experiment was carried out on a water tank setting

where tap water was used to simulate the background
material and a metal cylinder (10 mm diameter) immersed
inside water simulating the target object. Fig. 2(A) shows
the water container and the coordinate definition. A
40×40 mm square region was define as the searching area
which was highlighted by a black box. A copper plate was
used as the GND electrode and it was placed on the right
side of the container.

We first performed the data collection for 𝐴𝑁𝑁 training.

No. of Sample 16 25 36 49
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐺𝑟𝑖𝑑 6.8% 43.2% 33.8% 69.2%
𝑟𝑒𝑐𝑎𝑙𝑙𝐺𝑟𝑖𝑑 33.3% 66.5% 61.8% 90%
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴𝑆 76.9% 70.7% 68.6% 70.3%
𝑟𝑒𝑐𝑎𝑙𝑙𝐴𝑆 92.2% 95% 91.4% 91.4%

TABLE I: Precision and recall of 2 scanning methods.

The metal object was placed in the center and a grid
setting with a resolution of 2 mm in both 𝑋 and 𝑌 direction
was used. The measurements collected above the object
were labelled as ’1’, and ’0’ for the other data. Different
immersed depths (2.5 mm, 5 mm, 7.5 mm and 10 mm)
were used and all the measurements were put together
to train the 𝐴𝑁𝑁 model. Subsequently, the metal cylinder
was placed in one of the three different locations: (0,0),
(-15 mm, 15 mm), and (15 mm, 15 mm) as shown in Fig.
2(B). Both scanning methods were tested. For the grid
scanning, measurements were performed on equal steps in
both X and Y direction inside the searching area. Different
grid density from 4×4 to 7×7 were investigated. For the
𝐴𝑆 strategy, the 𝐺𝑃 model was initialised with the 𝐴𝑁𝑁
predictions at 5 positions including (-18, -18), (-18, 18),
(18, -18), (18, 18) and (0, 0). Then the optimiser was
queried for a new sampling position. The values collected
at this position were used to make a prediction, update the
𝐺𝑃 model, and so on so forth. To compare the sensing
performance between two methods, the 𝐴𝑆 process was
performed until the sampling number reached 49.

The results of 7×7 grid scanning and 𝐴𝑆 are shown in
the left column and right column of Fig. 2(C) respectively.
Results of all three conditions are put together for analysis.
Table I presents the precision and recall associated to the
number of scanning points. To achieve both high precision
and recall, the 𝐴𝑆 requires a much shorter sensing time
of 1.9 min (12 sampling points), compared to 7.6 min for
the grid scanning method (49 sampling points).

CONCLUSIONS AND DISCUSSION
The experimental results show that both scanning meth-

ods can effectively display the non-homogeneous region,
but a generally higher precision and recall is achieved by
using the 𝐴𝑆 strategy. Also, the active search method can
greatly reduce the number of sampling points compared
to a grid based searching method for achieving a similar
detection accuracy. Compared to the other medical sensing
technologies, the proposed RAEIS technology is non-
invasive, fast, effective, and most importantly, without
introducing additional instruments to the operational site.
[4] provides more technical details and tissue experiments.

REFERENCES
[1] Z. Cheng and et al., “Design and integration of electrical bio-

impedance sensing in surgical robotic tools for tissue identification
and display,” Frontiers in Robotics and AI, 2019.

[2] ——, “Robot assisted electrical impedance scanning for tissue
bioimpedance spectroscopy measurement,” Measurement, 2022.

[3] H. Salman and et al., “Trajectory-optimized sensing for active search
of tissue abnormalities in robotic surgery,” IEEE ICRA, 2018.

[4] Z. Cheng and et al., “Active search of subsurface lymph nodes using
robot-assisted electrical impedance scanning,” IEEE Transactions on
Instrumentation and Measurement, 2022.
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Real-time retina and instrument segmentation of OCT images based on GPU
accelerated inference

Pengwei Xu1, Mouloud Ourak1, Oscar Caravaca-Mora2,
Gianni Borghesan1,3, Dominiek Reynaerts1,4, and Emmanuel Vander Poorten1

1 Robot-Assisted Surgery Group, Department of Mechanical Engineering, KU Leuven, Belgium

2 Tearney Lab, Mass General Hospital, Harvard University, United States

3 Core Lab ROB, Flanders Make, Belgium

4 Core Lab MaPS, Flanders Make, Belgium

INTRODUCTION
Subretinal injection (SI) is a procedure where the

subretinal space in human eyes is accessed for drug
delivery and gene therapy purposes [1]. Through subreti-
nal injection these materials can be injected nearby the
retinal pigment epithelium cells and the plasma membrane
of the photoreceptor. Furthermore, the technique is able
to regress the consequent subretinal blebs rapidly [2].
Although important for treating and curing related eye
diseases, subretinal injection is very demanding, even for
skilled surgeons, due to the microscopic dimensions of the
anatomic structures involved as well as due to the delicate
nature of the retina. This motivates the development of
robot-assisted approaches.

Surgical instrument tracking is a core component for
robotic surgery, because it can provide feedback for guid-
ance or closed-loop control [3]. Nowadays, optical coher-
ence tomography (OCT) is gaining popularity as imaging
modality in eye surgery. OCT has been used to visualise
anatomic structures. Others used it to estimate the distance
between the surgical tool and the retina without [4] or with
[3] instrument tracking. For intra-operative use of OCT it
is vital that the signals are processed fast and reliable.

Deep Learning (DL) inference is the process of using a
trained neural network to make predictions against new
data. Previous work that focused on accelerating infer-
ence of OCT reported already very short inference times
namely 3.5ms to segment the retinal layer boundaries [5].
However, performance for joint segmentation of retina and
instrument takes much longer. E.g. works from Peng and
Sommersperger [3] required at least 13ms per B-scan. This
abstract introduces optimization methods for DL inference
for segmenting both retina and surgical instruments, aim-
ing to deliver real-time low-latency instrument tracking.
First results on an in-silico eye model (Fig.1) showed
inference time below 5.5 ms which is less than half of
the previous state-of-the-art.

MATERIALS AND METHODS
DL segmentation starts from generating ground truth

data for retina and needle segmentation. After that, a U-

retina
mock-up

needle

OCT scanner

Fig. 1: Experimental setup, a surgical needle is attached to
an XYZ positioning stage, an eye model is placed below
the OCT scanner. Multiple positions of needle and eye
model were set for training and testing.

Net model is trained to classify each pixel of the cross-
sectional tomography (B-scan). The B-scan is achieved
by laterally combining a series of axial depth OCT scans
(A-scan). The OCT pixels are labelled into three classes,
namely: retina, needle, and background. Proposed by
Ronneberger et al. [6], U-Net is widely used for image
segmentation, especially in medical applications where
the amount of available data is usually limited. It has
also been used previously for OCT image segmentation.
E.g. Sommersperger reported accuracy of classifying pix-
els of the B-scan exceeding 95% [3]. During training,
the parameters of the neural network are optimized based
on the error between prediction and ground truth. After
training, inference in milliseconds can be obtained by
exploiting GPU acceleration. For real-time inference, a
trained neural network, has to be further compressed.
The precision of the network parameters may need to be
reduced, so that computational cost can be reduced and
real-time inference becomes possible.

This work exploited TensorRT, which is a platform for

Proceedings of the 11th Joint Workshop on
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Fig. 2: TensorRT optimization pipeline. During the opti-
mization routine, the throughput is maximized by quantiz-
ing models to mixed precision while preserving accuracy.
GPU memory and bandwidth are optimized intensively.

Fig. 3: Example of data augmentation from a dense-
resolution OCT volume. Pictures are en face projection
views of the OCT volume. The left picture shows the
entire volume. The instrument is visible as the darker
region. 16 sub-volumes of size 1mm× 1mm are extracted
from the complete volume 5mm×5mm based on different
window positions. Afterwards, 7 equally-spaced B-scans
are extracted from each sub-volume, simulating the data
that would be acquired during RT approaches.

high-performance DL inference developed by NVIDIA.
TensorRT is developed based on CUDA, NVIDIA’s par-
allel programming model, and allows us to significantly
accelerate DL inference [5], [7]. A typical optimization
workflow of TensorRT is shown in Fig.2. This abstract
reports on a TensorRT inference engine that was set up
for efficient segmentation of OCT images. High-resolution
OCT images were acquired from an eye mock-up with
a swept source OCT system which was assembled in
our group based on Axsun OCT (SS-OCT, 1310 OEM,
Axsun Technologies, MA, US). The system has a 100kHz
sampling rate and an axial resolution of 5.6 µm. Figure 1
shows the experimental setup. 1000 B-scan images of size
1000×1024 were acquired over a field of view of 5×5 mm
at 8 positions. Then the acquired B-scans are augmented
into 448 B-scans of size 256×1024 as shown in Fig.3 for
training and validation of the U-Net model. A computer
with Intel i9-9880H CPU, an NVIDIA Quadro RTX 3000
GPU, and 32 GB of RAM was used.

RESULTS
The original U-Net model and optimized TensorRT

inference engine, were tested by segmenting 100 test B-
scans for 100 iterations respectively. Both ran on the GPU,
using the same FP32 precision. The results show that after
optimization (Table I), the inference time for segmenting
one B-scan image was reduced as much as 35 times. The

Fig. 4: An example of segmentation result by the U-Net.
The B-scan is of size 256 × 1024 pixels. The instrument
is labeled in blue, while the retina is labeled in red.

TABLE I: Comparison of inference time shown as mean
time ± standard deviation, over 100 iterations.

Mean Inference Maximum inference
Original U-Net 187.16 ± 3.48 ms 194.24 ms

Optimized TensorRT 5.39 ± 0.02 ms 5.47 ms

aforementioned U-Net inference optimization significantly
reduced the inference time, while it was proven to preserve
overall estimation accuracy as well [5]. Fig.4 provides a
view of the obtained segmentation accuracy.

CONCLUSIONS AND DISCUSSION
This abstract presented a preliminary study of real time

retina and instrument segmentation based on optimized
DL inference model built with TensorRT. It was shown
that it is possible to segment the OCT image of the
retina and the instrument in several milliseconds. This
result is supportive for real time instrument tracking
in robot-assisted subretinal surgery. A limitation of the
current work is that training of the DL networks requires
a sufficiently large data-set covering various situations,
while in this abstract the proposed method is only tested
on different positions of a simple eye model.
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INTRODUCTION
Retinal venous occlusion (RVO) is the second most

common retinal vascular disease. In total, more than 16.4
million people suffer from it worldwide [1]. RVO can lead
to severe vision-impairing damage due to neovasculari-
sation, ischemia, and edema. Currently, retinal vein can-
nulation (RVC) provides a promising solution. However,
it remains a challenging operation for surgeons. During
the procedure, a clot-dissolving drug that can cannulate
the clotted retinal vein is injected into an obstructed vein
through a micro-scale cannulation needle [2]. However,
due to the small scale of the retinal veins (30 to 400 ),
reliable manual injection is extremely challenging [3].
With advancements in robotic eye surgery [4], the feasi-

bility of robot-assisted cannulation has been demonstrated
recently [5]. However, precise control of the insertion
depth remains a challenge. Too deep insertion means that
the targeted vein could be pierced and the active agent
could be injected below the vein into a highly sensitive
region. In order to avoid this problem, this abstract in-
vestigates the use of piezoelectric actuation to produce
precise insertion. However, piezoelectric actuator exhibits
hysteresis between the applied input voltage and output
displacement. To cope with the complex non-linear rela-
tionship generated by hysteresis, mathematical modeling
approaches, such as the Rate-Dependent Prandtl-Ishlinskii
(RDPI), e.g. used in [6], were proposed. These methods
require careful identification of quite a number of param-
eters. Recently, deep learning (DL) has also shown good
potential to learn complex hysteresis behaviour [7]. This
work investigates accurate control of the micropositioning
piezoelectric actuator for RVC using such DL-method.

MATERIALS AND METHODS
Hysteresis is typically described as time series data, be-

cause it is affected by both current and previous inputs. To
cope with this type of data, a Long Short-Term Memory
(LSTM) artificial neural network, which uses historical
data as a starting point and applies this knowledge to
predict future outputs, is proposed [8].
To collect training data and evaluate the performance of

the LSTM, an experimental setup was developed (see Fig.
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Fig. 1: Experimental setup, a piezo actuator realizes 1-
dimensional motion, a laser distance sensor captures the
achieved motion for evaluation purposes.

1). A micropositioning piezoelectric actuator (APF503,
Thorlabs) is used to generate motion with amplitude
up to 390. The piezoelectric actuator is actuated by
piezoelectric drive supplies (KPZ101, Thorlabs) up to
150V. The piezoceramic is a smart material that expands
or contracts when an electrical voltage is applied. The
expansion or contraction of the piezoceramic is amplified
into a larger linear movement through a flexure mounted
on the actuator (visible in the insert of Fig. 1). The
setup also contains a high-resolution (0.7) laser distance
sensor (OM70-11216505, Baumer Group, Switzerland)
that captures the motion of the piezoelectric actuator.
The applied electrical voltage and resulting displacement
is collected through LabVIEW®. Electrical voltages as
descending sinusoidal waves following:

𝑣(𝑡) = 𝐴𝑒−𝜏𝑡 (sin(2𝜋 𝑓 𝑡 − 𝜋

2
) + 1) [V] (1)

were used to drive the piezoelectric actuator and generate
multi-loop hysteresis training data. The resulting displace-
ment and collected electrical voltage was used as input
and label to train the LSTM, respectively. The LSTM
network contains 4 stacked layers. Each LSTM cell is
made up of 64 neurons. Because of the small scale of the
retinal veins, the amplitude A was set to 7.5𝑉 to ensure
the peak value of the resulting motion would stay below
30. To enrich the training data, the descending constant
𝜏 was set to -0.08 and -0.12, the frequency 𝑓 was set
to 0.4Hz, 0.8Hz, 1.2Hz, and 1.6Hz. As a result, eight
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Fig. 2: (a): Rate-dependant hysteresis. (b): Desired trajectory (red) and measured trajectory achieved by RDPI (orange)
and LSTM (blue). (c): Relation between desired trajectory and measured trajectory.

groups containing 19216 data points were used to train
the LSTM. Figure 2(a) shows the major hysteresis loops of
each frequency. The width of the hysteresis loops increases
as the excitation frequency increases. This behavior is
known as rate-dependent hysteresis. The whole training
process takes around 25 to 30 minutes with 200 epochs on
a 6 GB CUDA-capable GPU. To test the performance of
the trained LSTM, the desired trajectory data were used
as input, while needed control voltage was predicted as
output. The following trajectory:

𝑑 (𝑡) = 15𝑒−0.1𝑡 (sin(2𝜋𝑡 − 𝜋

2
) + 1) [] (2)

was used to test the trained LSTM model. The am-
plitude was set to 15 keeping the peak value of the
test trajectory below 30. The test trajectory data were
reshaped into a window size of 50. Each group acts like
𝑑 (𝑡−49) , 𝑑 (𝑡−48) , ... 𝑑 (𝑡 ) , and was used to predict 𝑣 (𝑡 ) .
Afterwards, the reshaped trajectory data were fed into
the trained LSTM model. The average prediction time of
each Δ𝑝𝑜𝑖𝑛𝑡 in LSTM is 4.5 ms. The output of the LSTM
was read as control signal and sent to the piezo drive
to generate the corresponding voltage. The measurements
from the laser distance sensor served as ground truth
to calculate the three types errors in Table I. To assess
the quality of the LSTM-based controller, a state-of-the-
art RDPI-based controller, introduced in [6], was set up
as well. To quantitatively evaluate the performance of
both controllers, three metrics are used, namely Maximum
Absolute Error (MAE), Root Mean Square Error (RMSE),
and Normalized Root Mean Square Error (NRMSE).

TABLE I: Results, over 5 groups of experiments

Model RMSE () MAE () NRMSE (%)
Mean STD Mean STD Mean STD

RDPI 1.76 0.08 3.66 0.25 6.17 0.01
LSTM 0.56 0.08 1.48 0.23 1.95 0.01

RESULTS
The experiments were repeated five times. Figure 2(b)

shows one example of the five experiments. One can ob-
serve that the LSTM-based model can accurately control
the piezoelectric actuator, allowing it to follow precisely
the desired trajectory. The three metrics and standard devi-
ation over five groups of experiments are shown in Table I.
The average RMSE, MAE, and NRMSE of the LSTM
are respectively 0.56, 1.48, and 1.95%. Compared to the
RDPI model, the LSTM model improves performance
by 68%, 60%, and 69%, respectively. offering a lower

standard deviation over the three metrics, the LSTM-
based controller shows good repeatable performance. The
compensated input-output relationship is shown in the Fig.
2(c) by comparing the measured and desired trajectories.
Compared to the RDPI model, the LSTM-based controller
establishes a more linear relationship. This 1-to-1 response
shows that the hysteresis is adequately compensated by the
controller.

CONCLUSIONS AND DISCUSSION
An LSTM-based controller was introduced to precisely

control the piezoelectric actuator in this abstract. The
proposed LSTM model was first trained under eight
groups of descending sinusoidal waves. Following that,
the trained LSTM model was tested with the desired
trajectory under different frequencies 𝑓 and descending
constant 𝜏. The performance of the LSTM model was
evaluated with RMSE (0.56), MAE (1.48), and NRMSE
(1.95%). The errors are less than half of those achieved
by the RDPI model. The good linearity shown in Fig.
2(c) demonstrates the feasibility of the proposed LSTM
model in compensating for hysteresis under micrometer
scale in a micropositioning piezoelectric actuator, which
offers an alternative control scheme for minimally invasive
eye surgery.
Future work will focus on investigating generalization

ability of the LSTM-based controller over different test
trajectories. We also aim to move to a realistic pre-clinical
phantom.
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Introduction
Uterine leiomyomas or fibroids are benign tumors that

generate on the surface or within the muscular tissues of
the uterus. They appear as lumps that are usually stiffer
than the surrounding structures [1] and are associated with
symptoms in about 80% of women affected by fibromato-
sis, which include bleeding, menstrual and pelvic pain and
infertility. For these reasons, they often require surgical
treatment, which usually relies on the usage of commercial
robotic platforms for Robot-assisted Minimally Invasive
Surgery (RMIS), such as the da Vinci Xi surgical system
(Intuitive Surgical, CA, USA). The goal is the removal of
the uterine fibroid or, in a precautionary manner, of the
whole uterus [2]. This condition is extremely negative for
fertile women. On the contrary, if the surgeon could cor-
rectly identify the position of the myomas through tactile
feedback, which should be ideally close to the cutaneous
information acquired during physical palpation, the impact
of the surgical procedure would be minimized, together
with the possible damages to the other uterine tissues.
In literature there are several examples of haptic devices,
both kinaesthetic (force-feedback) and cutaneous, which
provides cues for lump localization in both laparoscopic
and robotics-enabled surgery - see [3] for a discussion.
However, these systems were not specifically designed
for, and tested in, gynecologic RMIS applications, where
the absence of haptic feedback in RMIS procedures rep-
resents a well-documented cause of incomplete removal
of myomas and of higher incidence of recurrent myomas
[4]. In [3] we proposed to use the W-FYD [5], a wear-
able fabric-based softness display for softness rendering
- see fig. 1, to reproduce the stiffness characteristic of
fibroids - and hence to enhance their localization in a
teleoperation architecture that simulates a robot-assisted
surgical palpation of leiomyomas. Relying on sensory
substitution the teleoperation loop is intrinsically stable.
In our work, we first performed an ex-vivo stiffness char-
acterization of the uterine tissues, to properly map it onto
the characteristics of our device. We tested our integrated
system with gynecologic surgeons in palpation tasks with
silicone specimens, which replicated the characteristics of
uterine tissues with embedded leiomyomas. Results show

This work has received funding from the Italian Ministry of Education
and Research (MIUR) in the framework of the CrossLab project (De-
partments of Excellence), and in the framework of PRIN (Programmi
di Ricerca Scientifica di Rilevante Interesse Nazionale) 2017 with the
project TIGHT: Tactile InteGration for Humans and arTificial systems
(Grant number 818 2017SB48FP)

that our system enables a softness-based discrimination
of the embedded fibroids comparable to the one that
physicians would achieve using directly their fingers in
palpation tasks. Furthermore, the feedback provided by the
haptic interface was perceived as comfortable, intuitive,
and highly useful for fibroid localization. In the following
we report the details of the teleoperation platform and of
the experimental protocol. For further information, please
refer to [3].

Materials and Methods
The teleoperation system we designed consists of two

main components; the teleoperated part, or Indenting
System; and the W-FYD integrated with the console, or
teleoperating part.

A. The Indenting System
The Indenting System is a two Degrees of Freedom

(DoFs) mechatronic device, which can perform a con-
trolled indentation on an object (in our work we consid-
ered fibromatosis uterine tissues and silicone specimens),
while gathering force and displacement information.

B. W-FYD: Wearable Fabric Yielding Display and the
console

The W-FYD uses a layer of isotropic elastic fabric as
interaction surface for the user. The device is composed of
two main parts: the base and the frame. The base, directly
fixed on the user’s finger, hosts the lifting system that
allows the passive interaction. The frame, that is moved
by the lifting mechanism, hosts the two DC motors used
to move and stretch the fabric band allowing the stiffness
control. The device can enable two different modes of
interaction: a passive mode, in which the user is stimulated
via the lifting mechanism pressing the contact interface
against the finger-pad (the finger is not moving - see
Fig. 1(b)); and an active one, in which the finger actively
probes the interaction surface for softness. In this work,
we considered the passive mode to deliver only tactile cues
to the skin [6].

The change in the stretching level of the fabric is
obtained controlling the angle of the two DC motors,
producing different levels of stiffness to be provided on
the user’s finger-pad. In the passive mode, the stiffness
is managed considering the indentation ℎ𝑝 is directly
generated by the system and the stretching state of the
fabric is controlled accordingly. In this manner, the W-
FYD can convey softness information - computed from
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Fig. 1. W-FYD functioning principles [7]. (a) W-FYD Prototype worn
on the user’s finger. (b) Passive Mode: Lifting mechanism (in red the
moving parts). (c) Motor angles definition. .

the force and indentation information acquired by the
Indenting System - to the human operator (relying on a
suitable scaling coefficient). The W-FYD is attached to the
stylus of the Geomagic Touch, which acts as teleoperating
console and provides position commands to the indenting
system. The entire control cycle works at a frequency of
200 Hz.

C. The protocol
The task of the experiment consisted in the evaluation

of the user capability in discriminating the presence of
the myomas using stiffness tactile feedback in real-time
in two different conditions. The first condition, named the
Ground Truth Condition, consisted in the discrimination
of the lump in silicone samples replicating the biological
tissues without the use of the system, but relying on direct
palpation. In the second condition, named Evaluating
Condition, the surgeons were required to perform the same
task using the teleoperation architecture with the W-FYD.
For each trial, the test sample was placed below the index
finger of the user’s right hand/the Indenting System and
the participant was asked to perform some exploration on
it. At the same time, the user was allowed to perform an
exploration with the left hand index finger on all the four
comparison samples (a cubic shape of 35 mm containing
a spherical shape with 6.5 mm diameter at three different
depth lengths, 5 mm, 10 mm and 15 mm, respectively.
There is an additional sample without any lump), one at
the time and in the same order for each trial, and was
asked to identify which of these corresponded to the test
sample.

Thirteen participants (5 Female, Age mean±SD:
29.77±3.22), of which twelve medical residents and one
senior experienced clinician, took part to the study. No one
had any physical limitation which would have affected the
experimental outcomes. They gave their informed consent
to participate to the experiments. A total of 40 random
trials were presented to the user (10 times for each sample)
for each condition, see fig. 2.

At the end of the experiment, the participants underwent
through a subjective quantitative evaluation test using a
seven-point Likert-type scale (1: Strongly disagree, 7:
Strongly agree).

D. Results
A Friedman test was used to compare the results

(recognition accuracy) in the two conditions considering
four repeated measures for each subject (one for each
experimental condition of the position of myomas). No
statistical difference was found between subjects’ perfor-
mances while interacting directly with the samples and
while interacting through the presented device (𝑝 > 0.05).

(a)

(b)

Fig. 2. Experimental setup (a) Ground Truth Condition (b) Evaluating
Condition. In (b) it is also possible to observe the architecture with the
W-FYD system worn by a surgeon and fixed to the teloperating console,
i.e. a Geomagic Touch stylus.

Results from the subjective evaluation showed that
participants perceived the tactile feedback from the W-
FYD intuitive and easy to distinguish with respect to the
different stimuli. Furthermore participants agreed on the
utility of the integration of the W-FYD with the tele-
presence robotic system in laparoscopic robotic myomec-
tomy.

Discussion and Conclusion
The outcomes of our work [3] suggest that the in-

tegration of the W-FYD with a surgical robot could
represent a viable solution for a precise localization of
myomas during intraoperative procedures, enabling a less
invasive and more located surgical intervention. However,
an effective translation of this solution in real scenarios is
not straightforward and comes with important challenges,
such as the development of suitable sensing strategies
for the teleoperated robot, for retrieving tissue stiffness
information.
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INTRODUCTION
Due to its delicate subject matter and challenging oper-

ations, neurosurgery has always been in need for adapting
new techniques and technologies. A procedure that could
widely benefit from robotic technology is the Endoscopic
Endonasal Transsphenoidal Surgery (EETS). The EETS
approach is a minimally invasive neurosurgical technique
that is performed via an anterior sphenoidotomy and aims
at the removal of sellar and parasellar lesions with the use
of an endoscope and standard rigid instruments [1].

In recent years, there has been an increased interest in
the Expanded Endoscopic Endonasal Approach (EEEA)
that expands the EETS areas of interest [2]. Although a
promising alternative to transcranial approaches that re-
quire craniotomies and brain retraction, the EEEA comes
with its limitations. In [3], a number of surgeons were
asked about these technical challenges, with 74% of
them identifying the limited surgical manipulation that the
standard non-articulated instruments offer as the biggest
challenge of this procedure.

In this paper, current development of an ergonomically
designed handheld robotic instrument for the EEEA is
presented. The instrument employs a three degrees-of-
freedom (DoF) robotic end-effector that provides access
to targets on the surface of the brain that were previously
unattainable with rigid tools. It also incorporates a rotating
joystick-body mechanism that can be placed at the optimal
position for the surgeon’s postural ergonomics, aiming
to increase the efficacy of keyhole neurosurgery without
burdening the surgeon with physiological problems.

MATERIALS AND METHODS
A. Development of the robotic end-effector

The robotic end-effector aimed to be located at the
distal tip of this instrument is a 3-DoF, tendon-driven,
spherical joint manipulator, with a diameter of 4mm and
17.5mm length. A preliminary prototype of this miniature
manipulator was fabricated and evaluated for its extended
workspace and force capabilities in [4]. Based on the
encouraging results from that preliminary design, the end-
effector showcased in Fig. 1 was developed. This prototype
was 3D printed both in resin and metal, and is currently
undergoing experimental evaluation.

B. Development of the ergonomic handle
1) Handle designs: Long-term use of tools that have

not been ergonomically designed can cause conditions

Fig. 1: (a) DoF of a conventional tool, and (b). DoF of
the miniature end-effector.

such as carpal-tunnel syndrome [5]. Thus, appropriate
ergonomic tool design is essential. To avoid such compli-
cations, the handle incorporated in the robotic instrument
should be ergonomically designed, and ideally have a fast
adoption rate, so that it can be easily integrated in the
surgical workflow. To cater to a large set of ergonomic
literature guidelines, two different handle concept proto-
types were developed shown in Fig. 2.

Fig. 2: (a) Experimental setup with renderings matched
to their respective prototypes. (b). The simulated environ-
ment when a researcher is carrying out the peg-transfer
task, and (c). The researcher holding the prototypes when
carrying out the peg-transfer task.

The first handle is a forearm-mounted handle that maps
the surgeon’s wrist degrees-of-freedom to that of the
robotic end-effector [6]. This handle alleviates the surgeon
of any wrist-fatigue and its intuitive movement mapping
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makes it easily adoptable. The second handle is a joystick-
and-trigger handle with a rotating body that places the joy-
stick to the position most comfortable for the surgeon, at a
thumb abduction position. That position differs depending
on hand-size and right- or left-handedness, making the use
of a rotating body a convenient solution.
2) Randomised crossover user-study: The handles pre-

sented in the previous section were incorporated into a
custom-designed virtual surgical task simulator and were
assessed for their performance and ergonomics when com-
pared with a standard neurosurgical grasper, to identify the
superior handle design. The virtual task was performed
by 9 novices with all 3 devices as part of a randomised
crossover user-study. Their performance and ergonomics
were evaluated both subjectively by themselves and ob-
jectively by a validated observational checklist [7].

In terms of performance and efficacy, the two robotic
handles clearly outperformed the standard neurosurgical
instrument. Between the two, the concept prototypes had
very similar behaviours. As far as their learning-curves
were concerned, the former was superior, whereas the
latter appeared to be more time-efficient after training.
Finally, during their ergonomic assessment, the rotating
joystick-body handle proved to be the safest device to use
for an extended amount of time according to a validated
ergonomic measure.

C. Handheld robotic instrument adaptation
The superior ergonomic results of the rotating joystick-

body handle, combined with the increased time and effort
it would take to switch between forearm-mounted instru-
ments during the endonasal approach, indicate that the
more favourable handle amongst the two, is the former.
Thus, current development focuses on the incorporation
of electronics and the previously presented robotic end-
effector into a handle with a rotating joystick-body, to
form a fully functional robotic instrument prototype. A
rendering of this prototype is shown in Fig. 3.

To incorporate electronics, as well as to create a robust
coupling between the handle body and the robotic end-
effector, the concept prototype presented in Fig. 2(b).
needed redesign. A translational, rather than a rotational,
joystick is used to make the device more compact, whereas
the rotating joystick-body is now secured in place with a
latch mechanism. The handle houses 3 miniature motors
with their encoder adapters and motor controllers (FAUL-
HABER, Schönaich, Germany).

It was fabricated with polylactic acid (PLA) plastic
using the desktop 3D printer Ultimaker S5 (Ultimaker,
Geldermalsen, Netherlands). Fig. 3 showcases the proto-
type handle body of the instrument as well as the end-
effector fabricated in metal. With the development of the
handle body of the instrument now finalised, the focus has
shifted on the end-effector body.

CONCLUSIONS AND DISCUSSION
In this work, the current development of a novel hand-

held robotic instrument for minimally invasive neuro-
surgery was presented. The handle employs a miniature

Fig. 3: Rendering of the robotic instrument, the metal end-
effector, and a prototype of the actuating handle.

robotic end-effector and an ergonomically designed han-
dle, aiming to increase the efficacy of keyhole neuro-
surgical approaches while also improving the procedural
ergonomics associated with these complex procedures.

In future work, the development of the robotised pro-
totype will be finalised, and its performance will be
evaluated in laboratory and clinical experiments. After the
efficacy of the instrument has been validated, the device
will be re-evaluated for its human factors aiming to have
developed a complete solution in terms of balance between
performance and improved ergonomics.

REFERENCES
[1] P. Cappabianca, L. M. Cavallo, and E. de Divitiis, “Endoscopic

endonasal transsphenoidal surgery,” Neurosurgery, vol. 55, no. 4,
pp. 933–941, 2004.

[2] A. R. Dehdashti, A. Ganna, I. Witterick, and F. Gentili, “Ex-
panded endoscopic endonasal approach for anterior cranial base
and suprasellar lesions: indications and limitations,” Neurosurgery,
vol. 64, no. 4, pp. 677–689, 2009.

[3] H. J. Marcus, T. P. Cundy, A. Hughes-Hallett, G.-Z. Yang, A. Darzi,
and D. Nandi, “Endoscopic and keyhole endoscope-assisted neuro-
surgical approaches: a qualitative survey on technical challenges and
technological solutions,” British journal of neurosurgery, vol. 28,
no. 5, pp. 606–610, 2014.

[4] E. Dimitrakakis, G. Dwyer, L. Lindenroth, P. Giataganas, N. L. Dor-
ward, H. J. Marcus, and D. Stoyanov, “A spherical joint robotic end-
effector for the expanded endoscopic endonasal approach,” Journal
of Medical Robotics Research, vol. 5, no. 03n04, p. 2150002, 2020.

[5] P. Stoklasek, A. Mizera, M. Manas, and D. Manas, “Improvement of
handle grip using reverse engineering, cae and rapid prototyping,”
in MATEC Web of Conferences, vol. 76. EDP Sciences, 2016, p.
02029.

[6] E. Dimitrakakis, L. Lindenroth, G. Dwyer, H. Aylmore, N. L.
Dorward, H. J. Marcus, and D. Stoyanov, “An intuitive surgical
handle design for robotic neurosurgery,” International Journal of
Computer Assisted Radiology and Surgery, pp. 1–9, 2021.

[7] E. Dimitrakakis, H. Aylmore, L. Lindenroth, G. Dwyer,
J. Carmichael, D. Z. Khan, N. L. Dorward, H. J. Marcus,
and D. Stoyanov, “Robotic handle prototypes for endoscopic
endonasal skull base surgery: Pre-clinical randomised controlled
trial of performance and ergonomics,” Annals of Biomedical
Engineering, pp. 1–15, 2022.

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 19



A Temporal Learning Approach to Inpainting Endoscopic Specularities and Its
effect on Image Correspondence

Rema Daher, Francisco Vasconcelos, and Danail Stoyanov

Computer Science Department, Surgical Robot Vision Group, University College London
This work was supported by WEISS at UCL(203145Z/16/Z) and H2020 FET(GA863146)

INTRODUCTION
Computer vision has been utilized to analyze minimally

invasive surgery videos and aid with polyp detection,
tool localization, and organ 3D modelling tasks. How-
ever, irregular light patterns such as saturation, specular
highlights, or extreme contrasts occlude texture and hinder
these tasks. In this work, specular highlights were removed
and the occluded data was reconstructed. To do that,
an unsupervised temporal generative adversarial network
(GAN) was used to inpaint specular highlights spatially
and temporally. Due to the absence of a dataset with
ground truth occluded textures, the network was trained
on the in-vivo gastric endoscopy dataset (Hyper-Kvasir
[1]) with specular highlight masks that were automatically
created and processed to act as pseudo ground truths. Ab-
lation studies and direct comparison with other methods
were used to show the improved results of our system. In
addition, the results on various datasets show the gener-
alizability of our network on different environments and
procedures as shown in Fig. 1. Finally, experiments also
show the positive effect of inpainting on other computer
vision tasks under the umbrella of 3D reconstruction
and localization in endoscopy including feature matching,
optical flow prediction, and disparity estimation.

Fig. 1: Some motivational results of the specular highlight
inpainting system on various datasets.

MATERIALS AND METHODS
The network architecture for inpainting is based on the

Spatio-Temporal Transformer Network (STTN) proposed
by [2]. STTN is a GAN mainly made up of spatial-
temporal transformers that take as input feature vectors
generated using a 2D convolutional encoder. The vector

outputs from the transformers are fed into a decoder to
generate the inpainted images.

Some modification were performed to transform STTN
from the task of object removal in diverse scenes to
specularity removal in endoscopic videos.

First, their model is trained on inpainting diverse videos
using random masks with frame ensured continuity. For
the case at hand, a pseudo ground truth was created for
training. To create this pseudo round truth, specularities
were first segmented from Hyper-Kvasir dataset using the
chromatic characteristics of specular highlights [3]. After
segmentation, the outputed masks are processed to cover
specularity-free regions by using position translation and
overlap clipping. Now that these masks cover up visible
or unoccluded texture, this texture acts as pseudo ground
truth to the inpainting output of these translated masks.

The pseudo ground truth was used for training the
model; however, this model was first initialized by another
model trained on temporally continuous random masks
with endoscopic videos. The model was pretrained be-
cause having randomly located masks with various sizes
can help the model learn missing textures of various
regions of the gastrointestinal tract, whereas specularity
masks can be limited to small sizes with certain textures
for example. With these modifications, the proposed sys-
tem becomes as is depicted in Fig. 2.

RESULTS AND DISCUSSION
Several experiments were performed to assess our

system’s inpainting ability. First, two models were ana-
lyzed, 𝑀𝑜𝑑𝑒𝑙𝑆,𝐶 , which was trained from scratch using
pseudo ground truth and 𝑀𝑜𝑑𝑒𝑙𝑇,𝐶 , which was also
trained on the pseudo ground truth, but it was initial-
ized with another model trained on spatially consistent
random shaped masks. Quantitative and qualitative anal-
ysis showed that 𝑀𝑜𝑑𝑒𝑙𝑇,𝐶 outperformed 𝑀𝑜𝑑𝑒𝑙𝑆,𝐶 in
inpainting. Visually, with transfer learning, more details
are captured as opposed to training from scratch. This was
also evaluated quantitatively using Peak Signal to Noise
Ratio (PSNR) and Mean Square Error (MSE) metrics
(𝑀𝑜𝑑𝑒𝑙𝑆,𝐶 : PSNR=28.896, MSE=120.613. 𝑀𝑜𝑑𝑒𝑙𝑇,𝐶 :
PSNR=29.542, MSE=104.719)

Other learning based approaches that solve this problem
do not have a temporal component [4], [5] and since these
systems are not open source, an ablation study is used
to show the importance of the temporal component in
this application. To do that, the model was tested on one
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Fig. 2: The flowchart of the proposed system.

frame at a time, which made it act as a model with no
temporal component, 𝑀𝑜𝑑𝑒𝑙𝑇,𝐶,𝑁𝑇 . The model was also
compared to a non-learning-based method represented as
𝑀𝑜𝑑𝑒𝑙𝑇𝑟𝑎𝑑 and to the original STTN model 𝑀𝑜𝑑𝑒𝑙𝑆𝑇𝑇𝑁 .
Visually, the proposed 𝑀𝑜𝑑𝑒𝑙𝑇,𝐶 showed the most de-
tailed inpainting, which was also shown through quantita-
tive analysis using PSNR and MSE metrics (Table I).

Models N𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛 H𝑀𝑆𝐸𝑚𝑒𝑎𝑛

𝑀𝑜𝑑𝑒𝑙𝑇,𝐶 29.542 104.719
𝑀𝑜𝑑𝑒𝑙𝑆𝑇𝑇𝑁 28.683 119.541
𝑀𝑜𝑑𝑒𝑙𝑇𝑟𝑎𝑑 19.909 895.222

𝑀𝑜𝑑𝑒𝑙𝑇,𝐶,𝑁𝑇 29.284 112.717

TABLE I: The 𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛 and 𝑀𝑆𝐸𝑚𝑒𝑎𝑛 values for
𝑀𝑜𝑑𝑒𝑙𝑆𝑇𝑇𝑁 , 𝑀𝑜𝑑𝑒𝑙𝑇,𝐶 , 𝑀𝑜𝑑𝑒𝑙𝑇,𝐶,𝑁𝑇 , and 𝑀𝑜𝑑𝑒𝑙𝑇𝑟𝑎𝑑 .

𝑀𝑜𝑑𝑒𝑙𝑇,𝐶 was tested on private data from a different
hospital and on in-vivo datasets (SERV-CT [6], SCARED
[7]). This showed the model’s generalizability (Fig. 1).

To analyse the effect of inpainting specular highlights
in endoscopy on other computer vision tasks, disparity,
feature matching, and optical flow are analysed. The
results showed improvement in disparity with inpainting
through visual and quantitative analysis on the basis of
bad3% error, root mean square error (RMS), and the
endpoint error (EPE) metrics.

As for feature matching, visually, the original frame pair
matches count is higher than those generated from the
inpainted frame pair. This indicates that without inpainting
specular highlights, lower quality feature matches are gen-
erated. Visual analysis on optical flow estimation showed
that the results were significantly better with inpainting
giving smoother and more homogeneous optical flows.

For the quantitative analysis of both feature matching
and optical flow, no direct ground truth was present. That
is why, camera pose estimation was performed using the
matches that were generated from feature matching and
optical flow separately with the results shown in Table II.
For feature matching, quantitative results were improved
with inpainting. On the other hand, the optical flow results
did not show any significant change; in fact, the results
were even degraded slightly with inpainting.

Statistics Feature Matching Optical Flow
RTE (◦) 8.31 (% 11.72) 0.67 (% 1.73)
RRE (◦) 2.0 (% 30.12) -0.05 (-% 1.59)

Inliers (pixels) 22.68 (% 25.17) -2432 (-% 4.82)

TABLE II: Mean of the difference between the feature-
/optical-flow-based pose estimation results of original ver-
sus inpainted sequences in terms of Relative Translation
and Rotation Errors (RTE, RRE) and RANSAC Inliers.

CONCLUSIONS
In this work, an unsupervised inpainting system was

proposed to remove specular highlights from endoscopic
videos. A pseudo ground truth was created and used
along with transfer learning to train a temporal GAN.
Experiments showed improvement on previous methods
by making use of direct comparison and ablation studies.
Our inpainting system also showed generalizability on
different datasets and a positive effect on endoscopic
feature matching, disparity, and optical flow prediction.
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INTRODUCTION
Ultrasound (US) is a widely used non-radiative medical

imaging modality considered for spine surgery. Through
3D reconstruction, US could help surgeons visualize the
internal anatomy. Benefiting from intelligent robotic con-
trol, US-based robot-assistance could be exploited to per-
form autonomous scanning without leading to increased
discomfort of the patient. Besides, robotic US scans could
potentially offer better quality US images by keeping tight
surface contact between the US probe and the skin.
During the past years, several robotic US systems have

been developed and applied for spine surgery [1], [2].
Victorova et al. implemented a robotic US system with
hybrid control for spine reconstruction. The proposed
system regulated the applied force and enhanced the
imaging quality [1]. However, it only focused on flat
phantom with continuously surface. The post processing
of US images was time-consuming. Zhang et al. also
implemented an US scanning system with an adaptive
approach to visualize spine [2]. The poses of US probe
were manipulated while the contact force ranged from 14
to 16 N. Nevertheless, the US images were processed with
complex image segmentation and volume rendering pro-
cedure. The aforementioned robotic US systems require
post processing for 3D reconstruction and visualization.
Therefore, it is necessary to develop a real-time recon-
struction framework with robust image processing and
control strategy for automatic robotic US scanning.
This paper provides a real-time US reconstruction with

automatic robotic scanning. With hybrid control, the
US probe keeps good surface contact during scanning.
Meanwhile, the ultrasound images are simultaneously seg-
mented and accurately reconstructed.

MATERIALS AND METHODS
The employed robotic US system consists of a

lightweight robot (KUKA Robot LWR, Augsburg, Ger-
many) and a 7.5MHz US probe with US device (Sonosite,
FUJIFILM, USA). During testing, the US images were
recorded by a frame grabber (Epiphan, Palo Alto, USA).
A 6 DOF F/T sensor (Nano25, ATI Industrial Automation,
USA) was mounted with a custom designed probe housing
at the robot end effector. A spine phantom (Model 034,
CIRS, USA) was employed for experimental validation.
In addition, a PC workstation (Intel i7, CPU @2.6 GHz,
64G RAM) with Nvidia P2000 GPU was used for data ac-
quisition and processing. Figure 1 illustrates the workflow
and the experimental setup.

The developed framework contains an automatic robotic
scanning part and a real-time 3D US reconstruction.
Before scanning, 15 predefined points were manually
selected on the phantom surface with admittance control.
The recorded points are used to generate an "S" shape
scanning trajectory for automatic scanning. To perform
the scanning, the z axis of the US probe was aligned to
the normal vector of the surface which was computed
from the predefined trajectory. Subsequently, automatic
scanning was conducted with hybrid control while the
force along probe z axis was kept constant. The target
force was regulated on 3 N to guarantee the quality of
US images and keep patient safe. To ensure real-time
control, OROCOS (Open Robot Control Middleware) and
eTaSL (expressiongraph-based Task Specification Lan-
guage) were utilized.

The 3D US reconstruction was conducted in real-time
during scanning. US spatial calibration was required to
assure the reconstruction accuracy. Before scanning, the
calibration was implemented with a custom designed
sphere phantom [3]. Based on the calibration, the bone
contours in the US images could be transformed to robot
coordinates with the corresponding end-effector poses. A
deep learning network, U-Net, was developed for realizing
automatic image segmentation. For training, 500 images
in 480× 480 pixels were collected and manually labelled.
Those images were augmented by mirroring and shifting
on vertical and horizontal axes separately. Then, the model
was trained with the 2000 augmented images. The trained
model was evaluated with 50 images. A precision of 0.82
and accuracy of 0.98 was found. Subsequently, the model
was integrated with the real-time reconstruction. The spine
contours in the US images were automatically segmented
and generated as point clouds into the robot coordinate.
The outliers of the reconstructed point clouds were re-
moved by computing the distance from their neighbors
compared to the average with a 0.5 threshold level. Finally,
the Visualization Toolkit (VTK) was used to visualize the
generated point clouds in real-time by retrieving the data
stream.

To evaluate the 3D reconstruction, the automatic scan-
ning was repeated three times with the same scanning
trajectory. Then, the three reconstructions were assessed
by computing the distance between the three reconstructed
point clouds (from source to target point clouds). This
error indicates the scanning precision and actual spatial
displacement between the reconstructed point clouds.
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Fig. 1: (Left) Workflow of automatic robotic 3D US reconstruction. (Right) Overview of experimental setups.

RESULTS
The obtained force measurements are shown in Fig. 2

A). The force along the z axis is kept constant at 3 N
during scanning. The mean value of measurements is
2.95 N while the standard deviation is 0.21. The mean
force measurements along x and y axis are 0.05 N and
0.09 N respectively. The average scanning time is 273
seconds for the three repeated experiments.

Fig. 2: A) An example of force measurements. B) An
example of automatic reconstructed 3D point clouds.

The US images were segmented and processed in real-
time during scanning. With the U-Net, the point clouds
were generated and visualized at 3 Hz. The reconstructed
3D point clouds were displayed in Fig. 2 B). This result
shows the geometric structures and features of the spine.
The shape of the transverse process and the pedicle are
visibly reconstructed. Table I shows the repeatability of
the three 3D reconstructions. The mean errors of the
reconstructed point clouds ranged from 0.53 to 2.14 mm.

CONCLUSIONS AND DISCUSSION
This paper implements a real-time robotic US recon-

struction approach for spine surgery. With hybrid control,

TABLE I: Results of the repeatability assessment
source - target RMSE [mm] Mean [mm] Std. Dev.

1-2 0.73 0.53 0.94
1-3 0.91 0.83 1.82
2-1 0.66 0.43 0.91
2-3 1.45 2.11 2.89
3-1 1.46 2.14 2.70
3-2 1.41 1.99 2.64

the proposed method constantly keeps the scanning force
within a safe range to ensure good surface contact with
patient’s skin. The proposed scanning framework is not
affected by the curvature of phantom while following the
predefined scanning trajectory. For future research, it is
interesting to focus on trajectory optimization to reduce
the scanning time while keeping good reconstruction
accuracy.
Besides, the real-time DL-based image segmentation

improves the reconstruction efficiency and accuracy. The
image reconstruction is implemented with scanning si-
multaneously. Thus, the post reconstruction in previous
research [4], up to 8 seconds, is not required anymore.
Furthermore, the 3D reconstructions are also accurately
repeated with an RMSE lower than 1.46 mm. The recon-
structed point clouds illustrate the geometric features of
anatomy and spatial relation between each vertebra.
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INTRODUCTION

Twin-to-twin transfusion syndrome (TTTS) is a rare
fetal anomaly that affects the twins sharing a monochronic
placenta. It is caused by abnormal placental vascular
anastomoses on the placenta, leading to uneven flow of
blood between the two fetuses [1]. Fetoscopic Laser Pho-
tocoagulation (FLP) is used to treat TTTS, however, this
procedure is hindered because of difficulty in visualizing
the intraoperative surgical environment due to limited
surgical field-of-view (FoV), unusual placenta position,
limited manoeuvrability of the fetoscope and poor visibil-
ity due to fluid turbidity and occlusions (Fig. 1. This adds
to the surgeon’s cognitive load and may result in increased
procedural time and missed treatment, leading to persistent
TTTS. Fetoscopic video mosaicking can create a virtual
expanded FoV image of the fetoscopic intraoperative en-
vironment, which may support the surgeons in localizing
the vascular anastomoses during the FLP procedure.

Classical video mosaicking techniques perform hand-
crafted feature detection and description (i.e. SIFT, SURF,
ORB, etc) followed by feature matching and homography
estimation for image stitching. However, these methods
perform poorly on the in vivo fetoscopic videos due to
low resolution, poor visibility, honeycomb or blur effect,
floating particles and texture paucity or repetitive texture.
Deep learning-based sequential mosaicking [2] method
overcomes the limitation of feature-based mosaicking
methods but results in drifting error when stitching non-
planar views. A recent intensity-based image registra-
tion [3] method relies on placental vessel segmentation
maps for registration. This facilitate in overcoming some
visibility challenges, however, this method fails when the
predicted segmentation map is inaccurate or inconsistent
across frames or in views with thin or no vessels.

In the paper, we propose the use of transformer-based
detector-free local feature matching (LoFTR) method [4]
as a dense feature matching technique for creating
reliable mosaics with minimal drifting error. Using
the publicly available dataset [3], we experimentally
show the robustness of the proposed method over the
state-of-the-art vessel-based method.

∗This work was supported by the Wellcome/EPSRC Centre for
Interventional & Surgical Sciences (WEISS) (203145Z/16/Z), EPSRC
(EP/P027938/1, EP/R004080/1, NS/A000027/1, EP/P012841/1); and the
Royal Academy of Engineering Chair in Emerging Technologies Scheme.

Fig. 1: During FLP, a fetoscope, having limited field-of-
view, is inserted into the amniotic cavity and is used to
localize and ablate the vascular anastomoses sites.

MATERIALS AND METHODS
Detector-Free Feature Representation: The recently
proposed LoFTR [4] method first establish pixel-wise
dense matches at a coarse level and later refine the good
matches at a fine level. Given two consecutive frames
𝐹𝑡 and 𝐹𝑡+1, a standard convolutional neural network
architecture is used to extract dense features at coarse,
�̃�𝑡 , �̃�𝑡+1 (at 1/8𝑡ℎ of input resolution), and fine, �̂�𝑡 , �̂�𝑡+1

(at 1/2𝑡ℎ of input resolution), levels from both frames. The
coarse local features, �̃�𝑡 , �̃�𝑡+1, becomes the input to the
LoFTR module. LoFTR uses transformer with positional
encoding, and self and cross-attention layers to transform
�̃�1, �̃�2 into position and context dependent local features,
denoted as �̃�𝑡

𝑡𝑟 , �̃�
𝑡+1
𝑡𝑟 , that can be matched easily.

Feature Matching: The coarse level matches M𝑐 between
�̃�𝑡
𝑡𝑟 , �̃�

𝑡+1
𝑡𝑟 are established by using a differential matching

layer, which gives a confidence matrix Pc . The matches
in Pc with confidence higher than a predefined thresh-
old and that also satisfies the mutual nearest neighbour
criteria are selected as M𝑐. Finally, coarse (M𝑐) to fine
(M 𝑓 ) matches are obtained by taking local window size
from fine-level features, �̂�𝑡 , �̂�𝑡+1, at each coarse match
positions, applying a LoFTR module to obtained the fine
transformed representation and correlating them. For more
detail, please refer to [4], in which it is shown that
LoFTR produces high-quality matches even in regions
having low-textures and are affected by motion blur or
repetitive patterns; making it an ideal matching module
for fetoscopic mosaicking.

Registration and Mosaicking: A circular mask covering
only the fetoscopic FoV is used to remove matches from
the unwanted blank regions. The registration between 𝐹𝑡

and 𝐹𝑡+1 is approximated as an affine transformation [3]
using RANdom SAmple Consensus (RANSAC) method.
The obtained transformation is refined by using only

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 24



Fig. 2: Visualization of the generated mosaic using the proposed LoFTR-based method for the 6 in vivo clips.

the inliers with the Levenberg-Marquardt method that
further reduces the reprojection error. Left-hand matrix
multiplication is applied to the pairwise transformations
to obtain the relative transformations of all frames in a
video with respect to the first frame [2], following by
image blending to generate an expanded FoV image.

RESULTS AND DISCUSSION

For the experimental analysis, we used the publicly
available fetoscopy placenta dataset [3] that contains 6
in vivo fetoscopy video clips from 6 different TTTS
procedures. The LoFTR matching model, pretrained on
the ScanNet dataset [4], is used for obtaining the fine-
level matches between two consecutive frames. Since
groundtruth transformations are not available in in vivo
fetoscopic videos, we use the 5-frame structural similarity
index measure (SSIM) [3] for the quantitative evaluation
of the resulting mosaics. The proposed LoFTR-based
method is also compared with the state-of-the-art vessel-
based [3] method (see Fig. 3). The qualitative analysis on
all 6 video clips is also performed (see Fig. 2).

From Fig. 3, we can observe that the proposed LoFTR-
based method performed significantly better on all video
clips (except video 1) resulting in significantly low in-
terquartile range and high median 5-frame SSIM when
compared to the vessel-based (MICCAI2020) [3] method.
Video 1 contains heavy amniotic fluid particles dynami-
cally floating in the in vivo environment, which affects the
performs of the LoFTR resulting in inaccurate transforma-
tion estimation. In a vessel-based method, such particles
are already filtered during vessel segmentation. Video 2-6
have dynamically changing non-planar views, with some
videos having low illumination and some frames having
either no or very thin vessels. This negatively influences
the vessel-based method, resulting in increase drifting
error. LoFTR-based method, on the other hand, showed
robustness even in regions having poor textures (very thin
or no vessels) and low illumination. This is also evident
from the qualitative results (see Fig. 2 which can be
compared with the qualitative results presented in [3].
In the case of Video 1, discontinuities are visible in the
generated mosaic. In the case of Video 2-6, the generated
mosaics are reliable and accurate without any visible
discontinuities, which is also inline with the observations
drawn from the quantitative results.

Fig. 3: Quantitative comparison of the proposed LoFTR-
based method with the vessel-based (MICCAI2020)
method [3] using the 5-frame SSIM metric.

CONCLUSIONS
We propose a fetoscopic video mosaicking method that

benefited from the detector-free feature matching with
transformers (LoFTR) [4] method, resulting in generat-
ing reliable virtual expanded field-of-view image of the
intraoperative fetoscopic environment. Using the publicly
available fetoscopy placenta dataset [3], we experimen-
tally showed that the proposed LoFTR-based method
outperformed the state-of-the-art vessel-based fetoscopic
mosaicking method. The proposed method is robust even
in low-textured and low illumination non-planar views,
which shows the potential of facilitating the surgeons dur-
ing the TTTS procedure. Future work involves validating
the proposed method on the larger FetReg [5] dataset.
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INTRODUCTION

Awake surgery consists into neurosurgery while the patient is awake, i.e., under conscious
sedation. Possible objectives of awake surgery are tumor removal, resection of brain vascular
malformations, and deep brain stimulation (e.g., treatment of Parkinson disease and epilepsy),
otherwise inoperable due to the proximity of the interested areas to those of the brain that
control vision, language, or body movements. The main advantage of awake surgery over
unconscious sedation is the precise localization of brain functions, in order to preserve as
much as possible the patient’s functions. During surgery, the neurosurgeon stimulates the area
around the tumor with small electrodes (i.e., direct electrical stimulation) to locate precisely the
functional areas of the brain that must be avoided for the surgical incision. The patient, who
receives a sedation that lets him/her to be conscious, is able to perform specific tasks demanded
by the neuropsychologist. These tasks are chosen in the pre-surgery phase, according to the
brain localization of the target and taking into account the patient’s pre-surgical capabilities
(i.e., level of education, presence of mental impairment, etc.) to verify the presence of movement
disorders (e.g., slowing or freezing movements during the test), aphasia (e.g., sudden language
impairment), dysexecutive syndrome (e.g., increased delay in reasoning and answering), etc. In
the surgical practice, the patient’s assessment is visually performed by the neuropsychologist
who evaluates whether the patient retains his/her capabilities or not, and eventually guides
the surgeon through a minimally damaging cut to reach the target. Such evaluation is widely
subjective and the neuropsychologist must catch any variation during the tests, ensuring,
throughout the procedure, that the patient does not feel any pain.
To support neuropsychologist and to overcome limitations posed by perspective evaluations, in
the related work [1] a tablet has been employed during the awake surgery, but no data has
been stored and no criteria for decision support are investigated. In [2], a platform to deliver
language and cognitive tasks to patients undergoing awake surgery has been tested in order to
provide a portable system for streamlining cognitive tasks and record standardized patient
response data. Serious games have been proposed to assess the capabilities of patients, such as
[3], where a tablet has been employed for cognitive capabilities, or [4], where a popular game has
been reworked and developed, using Leap Motion Controller (LMC), for stroke rehabilitation.
In [5], the authors have employed a LMC to quantify bradykinesia in parkinsonian patients
under deep brain stimulation. Previously, the authors of [6] have proposed an automatic
classification tool, based on LMC, to assess the motor dysfunction in patients with Parkinson
disease.

OBJECTIVE

Inspired by literature achievements in similar scenarios, the objective of this study is to propose
an intraoperative integrated system to support, in their evaluation, the neuropsychologists
during the interaction with the awake patient, including cognitive and motor tasks, with a
specific focus on assessment of hand function and fine motor skills. The cognitive evaluation
is supported by the use of a tablet, while the motor monitoring makes use of a LMC. These
two tools are selected for their real time outcomes, which is crucial considering the needs of
promptly notifying whether the surgeon is touching relevant brain structures.

MATERIALS AND METHODS

Two main devices are taken into account: a tablet and a LMC. The tablet serves as an interface
to propose the tests, collects the answers automatically, performs an unbiased evaluation of
the patient skills, and provides visual support to the neuropsychologist. We note that the tests
are currently performed using both sheets and electronic devices. To achieve the objectives, a
custom application (app) is developed which includes a set of tasks, and each one is conceived
to evaluate one or more skills. Part of the tasks merely consist into digitalization of previous
ones, while some other tasks are agreed upon the neuropsychologist to exploit the features of
the device. In any case, which tests are to be adopted for each patient is a responsibility of the
neuropsychologist. Starting from the patient’s input, specific features are extracted for each
task. A possible task is presented in Figure 1, where the patient is asked to select a specific
tile, indicated in the topmost text line.

Click on guitar 

Touch

Center

Reporting anomaly

Suspending task

Changing task

Repeating task

Figure 1: Task example.

For example, relevant features are latency of response to stimuli (e.g., delay in touching a
specified object, indicated by a visual message) and precision of finger positioning (e.g., missing
the right point due to impaired movements). The features are analyzed in real time and
made available to the neuropsychologist through intuitive data visualization. In the testing
phase, the neuropsychologist should signal whenever any anomaly occurs, in order to improve
the automatic detection of anomalies at a deployment stage. We believe it is impractical
to employ acoustic signals or messages, as the operating room is noisy and the patient’s
voice is attenuated by the oxygen mask. Pre-surgical skill assessment are considered as a
baseline for tablet-mediated intra-surgical evaluation. Moreover, as to avoid possible bias
during intra-surgical evaluation, these assessments should be performed mimicking the patient’s
position during surgery.
The LMC, instead, acquires the hand images, determines palm and finger positions, and tracks
the motion of each joint in real time. The objective is to track the execution of motor tasks
that involves the hand using a markerless technique, i.e., the patient does not need to wear any
device or glove. Wearing a device, instead, could represent a limitation in the operating room,
because several sensors are already in use (e.g., pulse oximeter) and the patient is encumbered
by intravenous feeding. The LMC is a small device (80x30x11.3 mm) that employs infrared
stereo cameras as tracking sensors. It must be placed next to the patient, because its interaction
zone depth is 10 to 60 cm from the camera. The LMC must be connected to a personal
computer to perform data acquisition, elaboration, and memorization. It can track the hand
gesture at high speed (approximately 120 Hz) and it can discern 27 distinct hand elements,
including joints and bones. Moreover, their motion can be approximately tracked even when
they are temporarily concealed. Thanks to the software development kit, the position of each
hand element can be exported and analyzed to generate motion features, such as smoothness of
the motion, presence of sudden stops, and motion speed. Preliminary results (Figure2) related
to monitoring thumb and index position show that freezing can be clearly detected.

Figure 2: Position of the fingertips while performing a simple task (repetitive hand pinching). The task is stopped
after 4 seconds to simulate freezing.

DISCUSSION AND CONCLUSIONS

To the best of authors’ knlowledge, it is the first proposal of a comprehensive tool to digitalize
tests and evaluations given by the neuropsychologist during awake surgery and the first tentative
in the literature to provide a decision support system for evaluating cognitive and motor skills
of patients under awake surgery. Smartawake is a project proposal that includes pre-surgical
skill evaluation to automatically compensate the patient’s previous skills and the first data
collection tool that integrates data from multiple sources (e.g., tablet and LMC) in the field
of awake surgery. Such structured data may also be of scientific interest in order to find
correlations between data acquired under the Smartawake project, annotations in the electronic
medical record, and events annotated by the neuropsychologist during the experiments, which
may be undiscovered yet.
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INTRODUCTION
Robot assisted minimally invasive surgery (RAMIS)

has been widely applied in various clinical treatment,
and da Vinci surgical system is the most typical rep-
resentative because of its special advantages, like hand-
eye coordination and 3D vision. However, the movement
of the stereo endoscope inside human body is limited.
Augmented reality (AR) is considered to be integrated
into RAMIS, since it can provide more visualization.
Recovering 3D information of surgical scene directly
affects the performance of AR. Many researchers have
implemented 3D reconstruction based on stereo images,
such as the semi-global block matching (SGBM) [1]. It has
high disparity search efficiency for common stereo images,
while the effect in medical field remains to be explored.
Hence, an enhanced semi-global block matching approach
with preprocessing (P-SGBM) is developed to recover the
3D information of endoscopic images in this paper.

METHODOLOGY
Stereo vision based 3D reconstruction can be divided

into several parts, including stereo camera calibration,
image rectification, stereo correspondence and depth map-
ping, as shown in Fig.1. In particular, stereo correspon-
dence and depth mapping are crucial for recovering the
space information, and they are implemented by means of
the following steps,

1) Image Preprocessing To enhance the model perfor-
mance and robustness, image preprocessing is a necessary
way before the disparity generation. Here, Gaussian fil-
tering and image equalization are combined to perform
the image preprocessing, since it improves the quality on
medical images because of removing noise and enlarging
global contrast.

2) Matching cost computation The left and right pixels
in the scanning line of processed images are matched
horizontally, and BT cost [2] is adopted to measure their
dissimilarity based on the linear intensity interpolation,

�̂� (𝑝𝑘 , 𝑞𝑘 , 𝐼L, 𝐼R) = min
𝑞𝑘− 1

2 ≤𝑞≤𝑞𝑘+ 1
2

���𝐼L (𝑝𝑘) − �̃�R (𝑞)
��� (1)

Where 𝑝𝑘 , 𝑞𝑘 denote the pixels to be measured in stereo
images. 𝐼L is the intensity function of left scanline, while
�̃�R is the interpolated function of right scanline. The
matching cost with disparity value 𝑑𝑘 can be defined as,

𝐶 (𝑝𝑘 , 𝑑𝑘) = min
{
�̂� (𝑝𝑘 , 𝑞𝑘 , 𝐼L, 𝐼R) , �̂� (𝑞𝑘 , 𝑝𝑘 , 𝐼R, 𝐼L)

}
(2)

Fig. 1: The reconstruction process using stereo images.

3) Cost aggregation Considering the possibility of
pixel mismatching, the smoothness of neighboring dispar-
ity is also regarded as a constraint. The cost 𝑆′𝑟𝑙 is defined
recursively as [1],

𝑆′𝑟𝑙 (𝑝𝑘 , 𝑑𝑘) =𝐶 (𝑝𝑘 , 𝑑𝑘) + min(𝑆′𝑟𝑙 (𝑝𝑘 − 𝑟𝑙 , 𝑑𝑘),
𝑆′𝑟𝑙 (𝑝𝑘 − 𝑟𝑙 , 𝑑𝑘 ± 1) + 𝐿1,

min
𝑛∈[𝑑1 ,𝑑2 ]

𝑆′𝑟𝑙 (𝑝𝑘 − 𝑟𝑙 , 𝑛) + 𝐿2)−
min

𝑖∈[𝑑1 ,𝑑2 ]
𝑆′𝑟𝑙 (𝑝𝑘 − 𝑟𝑙 , 𝑖)

(3)

Where 𝑝𝑘 − 𝑟𝑙 denotes the left pixel near 𝑝𝑘 , and 𝐿1, 𝐿2
are the different penalty factors. 𝑛 represents the remaining
values within the specific disparity range, while 𝑖 is
potential values with the same range. Then, the cost values
in different directions are summed to calculate the final
matching cost 𝑆𝑟 . Empirically, we set 𝐿1, 𝐿2 as 144, 576
respectively, 𝑑1 is −32 and 𝑑2 is 96.

4) Disparity computation The final disparity map
consists of the optimal disparity value corresponding to
each pixel. Winner Takes All is adopted to extract the
disparity value 𝑑𝑘 by minimizing the aggregate cost 𝑆𝑟 .
Fig. 2 presents the searching process of optimal disparity.
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Fig. 2: Schematic diagram of disparity generation.

5) Disparity refinement By following [1], three op-
timization methods are utilized to improve the quality:
(i) Uniqueness test is implemented to delete error values
to avoid falling into local optimal solution; (ii) Subpixel
interpolation aims to enhance the smoothness of dispar-
ity map; (iii) Left-right consistency check can eliminate
disparity errors caused by possible object occlusion.

6) Depth Matching Following the camera projection
transformation, the depth value 𝑧 is denoted as,

𝑍 = 𝑓 ∗ 𝑏/(𝑝𝑘 − 𝑞𝑘) (4)

Where 𝑓 is the camera focus, and 𝑏 represents the
baseline horizontal distance of the stereo camera. Lastly,
global point cloud traversal is applied to remove potential
singular points and black background points.

EXPERIMENTAL EVALUATION
To evaluate the practical performance of the proposed

approach, we used the laparoscopic images from EndoAbs
dataset [3]. Also, three different metrics [4] were adopted
to evaluate the reconstruction performance,

1. Accuracy. The average Euclidean distance between
the reconstructed point cloud and the ground truth.

2. Computing Time. Time from image preprocessing to
point cloud generation.

3. The percentage of matched pixels. Ratio of recon-
struction points of interest to the total pixels in the image.

Fig. 3 presents the preprocessed images of different
organs and the final generated point clouds. Then, the
quantitative evaluation is completed to verify the model
performance, and the corresponding box plot is shown
in Fig. 4. It can be seen that P-SGBM can have an ap-
parent improvement in accuracy and save little computing
time, although the percentage of matched pixels decreases
slightly. In the meanwhile, the Wilcoxon rank-sum test (p
< 0.05) is performed, and it shows that there are significant
differences in Accuracy and Computing Time.

CONCLUSION
This paper proposes a 3D reconstruction approach

named P-SGBM, and the experimental result shows that it

Fig. 3: Qualitative evaluation on Kidney, Liver and Spleen.

plot.jpg
Fig. 4: Box plot representation of the quantitative perfor-
mance with SGBM [1] and P-SGBM. (a)-(c) presents the
result of accuracy, computing time and the percentage of
matched pixels sequently.

can improve the performance of accuracy and computing
time compared with the traditional one. In the future, deep
learning based approaches [5] will be explored to develop
a real-time implementation.
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INTRODUCTION 

Automation of sub-tasks during robotic surgical 

operations still represents a challenging goal, especially 

for more elaborate tasks, such as pick and place, where 

different actions need to be executed sequentially in order 

to complete a task [1]. Among others, learning-based 

approaches are used to generate solutions that can solve 

tasks in different environments and conditions without 

the need of a human to tailor the algorithm to specific 

solutions once conditions change [2]. In the context of 

Robotic-Assisted Minimally Invasive Surgery (RAMIS), 

this work aims at contributing to the development of a 

flexible simulated environment to train the da Vinci 

surgical robot (Intuitive Surgical, Inc., Sunnyvale, CA) 

to autonomously execute pick and place tasks. To 

demonstrate the capabilities of the proposed simulation 

environment, we present a case study focused on the use 

of the PAF rail system for intraoperative organ 

repositioning [3]. The pick and place environment is 

developed inside the rlman framework [4], that interfaces 

the simulation environment in a gym-like fashion, with 

state of the art Reinforcement Learning (RL) libraries [5]. 

RL algorithms rely on an agent that interacts with the 

environment hundreds of thousands to millions of times, 

to learn the task. Becomes fundamental to have a good 

simulation environment to allow the agent to learn the 

specific task properly. We conduct four sets of 

experiments to show the importance of demonstration for 

correctly solving pick and place tasks. 

MATERIALS AND METHODS 

We consider a Markov Decision Process as a framework 

for picking optimal actions to maximize rewards in an 

environment E over discrete timesteps. An agent in a 

state 𝑥𝑡 takes an action 𝑎𝑡, receiving a reward 𝑟 for every 

timestep t, and E evolves to state 𝑥𝑡+1. In RL, the aim of 

the agent is to learn a policy 𝑎𝑡 =  𝜋(𝑥𝑡) to maximize 

expected returns. 𝑅𝑡 =  ∑ 𝛾(𝑖−𝑡)𝑟𝑖
𝑇
𝑖=𝑡  denotes the return, 

where T is the horizon that the agent optimizes over and 

γ is a discount factor for future rewards. The agent’s 

objective is to maximize expected return from the start 

distribution 𝐽 =  𝔼𝑟𝑖,𝑠𝑖~𝐸,𝑎𝑖~𝜋[𝑅0].  

For the experiments in this work we adopted Deep 

Deterministic Policy Gradients (DDPG) [7]. DDPG is a 

model-free off-policy reinforcement learning algorithm 

for continuous control which can utilise large function 

approximators such as neural networks. To handle 

varying task instances and parametrized goals, we use 

Hindsight Experience Replay (HER) [8]. Using HER, 

even fail episodes can be transformed by the agent into 

successful ones, provided that the state it experiences 

during the episode was the actual goal. 

Besides the optimality of the aforementioned algorithms, 

it becomes very challenging for a RL agent to solve 

multi-step tasks, such as pick and place, without any 

previous knowledge of the task [9]. Usually for RL 

algorithms is challenging to discover the high reward 

space, especially when training an agent from scratch in 

sparse reward settings. To overcome these exploration 

challenges and ease the training, there is the need to 

integrate demonstrations into the learning process, 

collecting samples to be used as behavioral cloning [10].  

EXPERIMENTS 

Given the recent effort of the scientific community in 

developing different environments for training surgical 

subtasks [6], [11], it becomes crucial to understand the 

importance of demonstration needed in order to correctly 

learn a specific task, especially if there is the need for 

acquiring new demonstrations for every new task that the 

algorithm attempt to solve. Moreover, collecting 

demonstrations can be a challenging task based on the 

strategy adopted, while also being extremely time 

consuming. We decided to test four different 

demonstration datasets, each characterized by a different 

number of episodes, respectively: 10, 25, 50 and 100 

episodes demonstrated. 

We use the success rates during testing as evaluation 

metric for the results of the experiments [11]. The results 

for training agents in rlman are compared to SurRoL 

benchmarks. In both frameworks, the agents are trained 

using the same algorithms. We replicate the results on our 

machine only for the Gauze Retrieve (GR) task which is 

comparable to the pick and place task in rlman. Figure 2 

shows a snapshot for each environment. We selected the 

GR environment as comparison based on the definition 

of the state space, action space and reward. 

Figure 1 Case study surgical scene using the PAF rail system  

and the Large Needle Driver (LDN) tool reproduced using ex-

vivo porcine kidney (left) and representation of the same scene 

in the rlman environment (right). 
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Figure 2 On the left: Gauze Retrieve environment from SuRoL 

and on the right the pick and place from rlman.  

For both tasks, the goal is to sequentially pick the object, 

respectively the surgical gauze and the PAF rail, and 

drive it towards the target position.  

In rlman, separate Docker containers are used to collect 

the agent experiences in parallel environments, 

maintaining the same shared replay buffer. Figure 3 

shows the results of the run experiments. The first two 

columns represent the success rate over the epochs for the 

GR task, run in the SuRoL environment. The last two 

columns are the pick and place results from rlman. Each 

row is a different experiment run with a different number 

of demonstrations, as highlighted by the label on the left-

hand side of the image. 

 

 
Figure 3 Results comparing the success rates during training 

and testing for the Gauze Retrieve task in SurRoL and the pick 

and place in rlman. 

CONCLUSION AND DISCUSSION 

We carried out four sets of experiments to understand the 

importance of number of demonstrations when training a 

pick and place task. The task has been analyzed and 

validated using the PAF rail system as a test case. The 

experiments compared the performances of the rlman 

framework and SurRoL benchmark. As shown in Fig.3, 

the agent is not able to learn in none of the environments 

when using only 10 demonstrated episodes. Better 

performances are obtained when the number of episodes 

increases to 25 and 50. For 100 episodes demonstration, 

the performances start decreasing again, reflected by the 

lower success rates. In this case, the large number of 

episodes available as previous knowledge to the agent, is 

constraining the agent knowledge around the 

demonstrated trajectories, substantially reducing its 

exploration capability. This results in worst learning 

performances.  

Although the tasks present the same formulation, the 

discrepancy encountered in the results might be due to 

differences in the definition of the environments and the 

associated variables. Results show that, although 

between 25 and 50 episodes are demonstrated, there are 

differences in the learning performances, these are not 

substantial. Further experiments, in the future work, will 

aim at defining the best trade-off between number of 

episodes recorded and agent performances in order to 

decrease the recording time. Moreover, it will be 

interesting to investigate how the quality of the 

demonstrations can affect the training. In this work, all 

the episodes recorded for demonstrations were 

successful. For future work we are going to analysed if 

failed demonstrations can impact the training and in what 

measure.  
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INTRODUCTION

Obstetrics ultrasound (US) is a non-invasive, real-time
and cost-effective diagnostic tool for monitoring mother
and fetus throughout gestation. The learner’s ability to
mentally build a three-dimensional (3D) map of the fetus
from a two-dimensional (2D) US image represents a
major challenge to skill acquisition. Pre-defined anatom-
ical planes, known as standard planes (SPs), retain a
significant clinical relevance. Their correct acquisition,
essential in the second-trimester fetal anatomic survey to
investigate the morphological characteristics of the fetus,
requires extensive experience due to the complexity of SP
definition, their high intra- and low inter-class variation.

Previous work proposed automating the extraction of
SPs from data acquired with a simplified protocol rather
than assisting operators in acquiring typical freehand 2D
SPs. These methods, based on traditional machine learning
(ML) approaches [1] or convolutional neural network
(CNN) [2], are mostly confined to selection or classifi-
cation of SPs. Besides, the quality of the obtained SP
cannot be compared with the one achieved with freehand
scanning. Automatic approaches for the localisation of
planes in 3D volumes are based either on supervised
learning (SL) [3] or reinforcement learning (RL) [4].
The first ones, even though effective, can mainly localize
one single plane at a time or are tailored to just one
organ. Also, they attempt to learn a mapping from high-
dimensional volumetric data to low-dimensional abstract
features directly, making the training difficult. In the
second case, most of the available solutions employing
deep reinforcement learning (DRL) are based on robotic
navigation and are used at the point of care. To the best of
our knowledge, there are no available training systems to
guide the novice sonographers in freehand obstetric US.

Currently, training and guidance in obstetric US are
very focused on SPs recognition. The autonomous probe
navigation towards SPs remains a highly challenging task
due to the need to interpret variable and complex images
and their spatial relationship. Our work aims to develop a
real-time training platform to guide inexperienced sonog-
raphers in acquiring proper obstetric US images that could
be potentially deployed for existing US machines.

MATERIALS AND METHODS

The development of our training system has been di-
vided into five main blocks (Figure 1).
1. Unity simulator for volume reconstruction and

synthetic images acquisition: The fetal volume can be
sliced with arbitrarily oriented planes. The user can visu-
alize them and annotate the standard ones. Besides, the
environment can be used for the automated generation of
supervised data using pre-acquired 3D US volumes.
2. Plane pose regression system: We use a regression
CNN to estimate the six-dimensional (6D) pose of arbi-
trarily oriented US planes with respect to the center of
the brain volume using a continuous rotation representa-
tion [5]. Our method is purely image-based and, therefore,
does not require tracking sensors. Besides, it differs from
traditional slice-to-volume registration methods since it
does not require a previously acquired volume of the
same subject being scanned. Instead, we predict poses
relative to a generalized brain center, where training and
test data belong to different subjects. The network was
trained on synthetic images acquired from phantom US
volumes and fine-tuned on real scans. Training data was
generated by slicing US volumes into imaging planes in
Unity at random coordinates and more densely around the
transventricular (TV) SP manually annotated in Unity.
Network architecture. We used ResNet-18 as a back-
bone for feature extraction. We modified the network
by re-initialising the fully connected layer and adding
a regression head to directly output the rotation and
translation representations. The inputs are the US image 𝐼
(128×128) obtained by slicing the volume and its 6D pose
\𝐺𝑇 = (𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧 , 𝛼𝑥 , 𝛼𝑦 , 𝛼𝑧). The CNN predicts the 6D
pose \𝑃𝑟𝑒𝑑 . Specifically, the network first outputs a vector
of nine parameters \𝑂𝑢𝑡 = (𝑡1, 𝑡2, 𝑡3, 𝑟1, ..., 𝑟6); the first
three are used for the translation and the last six for the
rotation, then used internally by our CNN to reconstruct
the rotation matrix R′ in the forward pass.
Loss function. For both translation and rotation we
used as loss the mean squared error (MSE) be-
tween predicted (t′,R′) and ground truth (t,R) values:
L𝑇𝑜𝑡 = 1

𝑁

∑𝑁
𝑡=1 ∥R′ − R∥2 + _ 1

𝑁

∑𝑁
𝑡=1 ∥t′ − t∥2, where

𝑁 denotes the total number of images 𝐼 within one training
epoch, and _ the hyperparameter balancing the two losses.
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Fig. 1: Overall structure of the vision-based DRL training system for obstetric US acquisitions

Experiments. Our framework is implemented in PyTorch
and trained using a single Tesla® V100-DGXS-32GB
GPU of an NVIDIA® DGX station. The network was
trained for 50 epochs with batch size of 𝐾 = 100 using
Adam optimiser, learning rate of 0.0001 and weighting
factor _ = 0.01. We performed two experiments.

• Experiment 1: (1.1) Training (4 scans, 75088 im-
ages) and testing (2 scans, 37544 images) on phan-
tom data; initialisation with weights from ImageNet;
(1.2) Training and testing on real data; initialisation
with weights from the case 1.1. The model is trained
on two scans of one fetus (38754 images) and tested
on two scans of a second fetus (38754 images). The
test sets are divided into two subgroups: random
planes (Test A) and planes around the TV SP (Test B).
To evaluate the translation results, we employed the
Euclidean distance between the two planes (𝑚𝑚). For
rotation, we display errors as the geodesic distance to
ground truth (°) defined as 𝐸𝑟𝑟𝑜𝑟𝑅𝑜𝑡 = arccos((R′′

00+
R′′

11 + R′′
22 − 1)/2), where R′′ = R′−1.

• Experiment 2: We fed sectional images of the TV SPs
into the network to estimate their pose as a sanity test.
We plotted back the two planes within the volume
into Unity to visually evaluate the distance between
the annotated SPs and the predicted ones (2.1, 2.2).

3. DRL framework for planes alignment: The process
reminds of the sonographers’ behaviour as they contin-
uously manipulate (action) the US probe (agent) to scan
the maternal abdomen (environment) while visualising the
intermediate planes 𝑃𝑡 on the screen (state) until the SP
𝑃𝑔 is acquired (reward and terminal state).
4. Guidance in simulation: Once the direction to align
the plane 𝑃𝑡 to the standard one 𝑃𝑔 is found, the users
could be guided through a 6-DoF haptic device by making
them feel a force pointing towards the correct direction.
5. Guidance on the phantom/patient: The system could
be developed as an interface and tested in a clinical setting,
with validation studies with novice operators.

RESULTS
For phantom data, the median errors are

0.90 mm/1.17° and 0.44 mm/1.21° for random planes and
planes close to the TV one. For real data, using a different
fetus than training, these errors are 0.58 mm/0.74° and

Fig. 2: Left: Translation and rotation error distributions in
phantom (1.1) and real (1.2) US data for planes acquired at
random coordinates (Test A) and around the annotated TV
SP (Test B). Right: Visual evaluation of TV SP prediction
on phantom (2.1) and real (2.2) US data

0.44 mm/0.89°. The average inference time is 2.97 ms
per plane. Figures 2 reports the translation and rotation
error distributions and the sanity test results.

CONCLUSIONS AND DISCUSSION
Our regression CNN can reliably localize US planes

within the fetal brain in phantom data and successfully
generalizes pose regression to an unseen fetal brain with-
out the need for real ground truth data in real-time
or 3D volume scans of the patient beforehand. Future
development will expand the prediction to volumes of
the whole fetus and assess its potential for vision-based,
freehand US assisted navigation when acquiring fetal SPs.

REFERENCES
[1] D. Ni et al., “Standard Plane Localization in Ultrasound by Radial

Component Model and Selective Search,” Ultrasound in Medicine
and Biology, vol. 40, no. 11, pp. 2728–2742, 2014.

[2] C. Baumgartner et al., “SonoNet: Real-Time Detection and Locali-
sation of Fetal Standard Scan Planes in Freehand Ultrasound,” IEEE
Transactions on Medical Imaging, vol. 36, no. 11, 2017.

[3] A. Schmidt-Richberg et al., “Offset regression networks for view
plane estimation in 3D fetal ultrasound,” in Medical Imaging, 2019.

[4] K. Li et al., “Autonomous navigation of an ultrasound probe
towards standard scan planes with deep reinforcement learning,”
IEEE International Conference on Robotics and Automation, pp.
8302–8308, 2021.

[5] Y. Zhou et al., “On the continuity of rotation representations in
neural networks,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2019, pp.
5738–5746.

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 32



OCT as tool for laser ablation monitoring applied to cholesteatoma

Q. Boyer∗1, D. V. A. Nguyen∗1, P. Rougeot1, O. Gaiffe2, B. Tamadazte3, J. Szewczyk3,
L. Tavernier2, Y. Nguyen4, and K. Rabenorosoa1

1FEMTO-ST, Université Bourgogne Franche-Comté, CNRS, Besançon, France

2Univ. Hospital of Besançon, Univ. Bourgogne Franche-Comté, France

3Institute for Intelligent Systems and Robotics (ISIR), Sorbonne University, CNRS, France.

4Sorbonne University/AP-HP, GHU Pitié-Salpêtrière, DMU ChIR, ORL Department, Unit of Audiology, France

I. INTRODUCTION
Cholesteatoma is an accumulation of exfoliated keratin
from squamous epithelium that invades the middle ear,
erodes the bony structures, and causes hearing loss as
well as other serious complications. The only treatment
of this disease is surgical intervention. As the middle
ear cavity is small and contains hidden recesses, the
complete removal of the disease is still challenging and the
recurrence rate can reach 25% for conventional methods.
An advanced treatment for this disease is laser surgery
that has been proven to remove efficiently the residual
cholesteatoma, thus reducing the recurrence rate [1]. In
the µRoCS project1, we aims to propose a dexterous
continuum robot with embedded laser instrument for ex-
haustive cholesteatoma removal. As part of this project,
this study focuses on measuring the vaporized volume of
cholesteatoma during the laser ablation process depending
on the laser parameters. This volume will be obtained
using OCT scanning and the proposed image processing.
The result has an important role to vaporize the right
amount of cholesteatoma tissue as insufficient removal
would result in cholesteatoma recurrence and excessive
removal would damage the healthy structures nearby.

II. MATERIALS AND METHODS
A. Experimental setup
An LBO fibered laser (Velas-8G, 532 nm, 8 W) was em-
ployed to vaporize cholesteatoma samples collected from
Besançon Hospital2 (see Fig. 1). The optical fiber has a
core diameter of 400 µm and a numerical aperture of 0.22.
The studied parameters are the laser power (6 W and 8 W)
and the exposure time (100 ms to 250 ms). The distance
between the fiber tip and the tissue is important due to
the divergence of the exiting laser beam. It should be as
short as possible so the size of the laser spot is minimal. A
small laser spot allows for precise ablation while limiting
the unwanted heating of surrounding tissues. The fiber tip

∗Q. Boyer and D. V. A. Nguyen contributed equally to this work.
1https://anr.fr/Project-ANR-17-CE19-0005
2The samples used are human surgical wastes collected under ethical

approval.
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Fig. 1: (a) Experimental Setup. (b) Cholesteatoma before
and (c) after a laser ablation.

is manually positioned in contact with the sample before
each laser pulse. The distance is therefore considered
constant throughout the study. Then, the tested laser pulse
was shot to vaporize a small amount of cholesteatoma
tissue. To estimate this vaporized volume, 3d-images (C-
scan) of the sample were acquired using a TELESTO-II
OCT with an LSM03 probe. The voxel dimensions were
25 µm along the X and Y axes and 3.5 µm along the Z
axis (optical axis). Eventually, a UR3 collaborative robot
arm was used to sequentially position the sample under
the laser instrument and the OCT.

B. Cholesteatoma segmentation
The main phases of the cholesteatoma segmentation are
presented in Fig. 2. First, a threshold is applied to roughly
separate the volumes of matter (cholesteatoma and sup-
port) from the background (Fig. 2b). In order to remove
the support, we extract from the obtained image two
arbitrary cross-sections parallel to the (0𝑥𝑧) plane that
only contain the support element, not the tissue (e.g., at
the boundaries of the image). The outlines of these cross-
sections are then obtained using the Canny edge detector
(edge function in Matlab). As the support has a prismatic
shape, it’s surface can be approximated by performing
a linear interpolation between the outlines detected in
the previous step. This can then be used to subtract the
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(a) Initial image. (b) Binarized image.

(c) After support re-
moval.

(d) Final image for
volume estimation.

Fig. 2: Steps of cholesteatoma OCT image processing.

support from the binary image obtained after thresholding.
At this stage, the image may still contains noises: either
false negatives (holes in the middle of the matter) or false
positives (matter in the background) (Fig. 2c). The imfill
function in Matlab is used to remove the false negatives.
It detects and fills the holes characterized by background
pixels that cannot be accessed from the boundary pixels
of the image through the face connectivities (6-connected
mode). The false positives are filtered using the opening
morphological operation (imopen function in Matlab) with
a structuring element based on a 50 µm-radius ball. The
solid component corresponding to the cholesteatoma is
then extracted using the bwselect3 function of Matlab
(Fig. 2d). Its volume can be simply estimated by counting
the voxels and multiplying the result by the voxel element
volume. The computation time for the segmentation is
about 5 s for a volume of 171 × 193 × 768 voxels using a
1.6 GHz Intel Core i5.

C. Vaporized volume of cholesteatoma
The vaporized volume can be calculated as the difference
of volume in the images before and after the laser ablation.
The experiments were conducted in the hours following
the cholesteatoma removal. Positioning the sample under
the fiber tip takes around 1 minute and the scanning time is
20 seconds so each iteration takes a few minutes. The time
delay between the operation and the experiments should
be kept as low as possible because time alters the optical
properties of the cholesteatoma [2].

III. RESULTS
The experimental results of the vaporized volumes with
respect to variant time exposures of the laser pulse for
two different laser powers, 6 W and 8 W, are presented
in Figure 3. In this experiment, the OCT can measure
an ablation volume of 0.03 mm3 (its resolution is even
about 2.2 × 10−6 mm3 for each voxel volume). One can
confirm that the vaporized volume increases linearly with
the exposure time. Moreover, the steady-state ablation rate
increases when the laser power increases. This experimen-
tal result is consistent with the computational model in
the literature [3]. As the tissue needs to be heated from
its initial temperature (20 °C) to the water vaporization

Fig. 3: Vaporized volume as a function of exposure time.

temperature (100 °C), there exists a minimum value of the
pulse duration so that cholesteatoma can be vaporized with
a given laser power. This limited value can be estimated
using linear extrapolation from the vaporized volume -
pulse duration line (e.g., 6 W and 105 ms).

IV. CONCLUSIONS AND DISCUSSION
This study provide an effective method for cholesteatoma
laser ablation monitoring using OCT and the proposed
image processing. Based on the obtained quantitative
results, the surgeon can select the proper laser parameters
(power and time exposure) as well as the required number
of shots for any specific volume of residual cholesteatoma
during the laser ablation process. More experiments can
be conducted to obtain a complete description of the
relationship between the cholesteatoma vaporized volume
and the laser parameters.
As an ex-vivo study, there are probably several differences
in the results comparing to the in-vivo practice such as: the
presence of blood in the tissue, the higer temperature in
human body (37 °C), or the tissue shrinkage due to natural
evaporation of water in ex-vivo case. The best solutions to
these limitations are making the experimental environment
close to the middle ear condition and avoiding intraoper-
ative bleeding.
Future work will focus on the integration of the OCT
probe into our hybrid concentric tube robot [4] to perform
cholesteatoma detection and laser ablation monitoring.
The integrated OCT probe will also be used to control
the distance between the fiber tip and the cholesteatoma
during the ablation and study its impact on the ablation
process.
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INTRODUCTION

The hip rotation centre (HRC) is an important anatom-
ical reference point for total knee arthroplasty (TKA) [1].
The correctly measured HRC is vital to geometrically
align a knee implant to the mechanical leg axis [2].
Conventionally, in many commercial orthopaedic surgical
systems (e.g., Navio, Smith&Nephew) [3], an infrared (IR)
marker is pinned in the distal femur and tracked by a
stationary optical tracker. The surgeon manually pivots the
limb while the pelvis is kept unmoved. The rotary trace is
displayed on a monitor in real-time to guide the surgeon to
cover a necessarily wide spread of points (Figure 1). Such
a procedure, however, is invasive to the patient due to the
marker incision, hard to interpret due to the nonintuitive
guidance, and unclear in terms of accuracy since the
computed hip location cannot be checked in vivo [4].

In this work, we present a head-mounted augmented
reality (AR)-assisted markerless method for HRC mea-
surement during TKA. A markerless segmentation and
registration method [5] is adopted to track an assumed
landmark at the femur end. No marker preparation, inser-
tion or registration is required, resulting in a less invasive
and tedious surgical workflow. We design an AR visual
feedback system to provide an intuitive perception of
where the collected landmarks locate in the physical world
and how well the computed hip centre aligns with the
observed anatomy. Through phantom trials, our proposed
HRC measurement achieves a more straightforward work-
flow together with reliable accuracy.

Fig. 1: User interface to guide the hip centre measurement
in Navio surgical system. Figure adopted from [3].

.

MATERIALS AND METHODS
We demonstrate the proposed workflow on a phantom

leg with the Microsoft HoloLens 2 (Figure 2). A commer-
cial RGBD camera, the RealSense D415 (Intel Corp), is
anchored to the HoloLens. The relative pose 𝐻

𝐷𝑇 between
the camera 𝐷 and HoloLens front-facing camera 𝐻 is
calibrated offline through a quick stereo pose calculation
procedure [6]. We adopted a previous published and vali-
dated markerless segmentation and registration algorithm
[5] to track the partially exposed femur surface in the
camera frame 𝐷: the femur points are first automatically
segmented from RGBD captures by a pretrained neural
network, then registered to a pre-scanned model for the
real-time pose 𝐹 (𝐷) (𝑡). The origin of the femur coordinate
system (𝑝 = [0, 0, 0, 1]𝑇 ) was used as the “landmark”
to avoid any bias due to rotational tracking errors. As
shown in Figure 3, during limb rotation, the tracked
landmark position is seamlessly sent to the HoloLens
via Transmission Control Protocol over Internet Protocol
(TCP/IP) and rendered as a red ball in real-time according
to:

𝑝 (𝑊 ) (𝑡) = 𝑊
𝐻𝑇 (𝑡) × 𝐻

𝐷𝑇 × 𝐹 (𝐷) (𝑡) × 𝑝 (1)

where 𝑊
𝐻𝑇 (𝑡) is given by the HoloLens self-localisation

capability.

Fig. 2: Transformation of the markerlessly measured hip
centre to HoloLens world for AR rendering.

.
If the user is satisfied with the tracked location, he/she

can perform an "air tap" to collect the current landmark.
The sphere will turn green and remain on display. Mean-
while, the confirmed 𝑝 (𝑊 ) is sent back to the PC and
stored there for hip centre computation. Such landmark
collection is repeated at least ten times, resulting in a set
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of confirmed green balls distributed in the space around
the hip centre (Figure 3). The PC is then used to compute
the HRC by means of a 3D version of the hyper-accurate
algebraic sphere fitting algorithm [7], [8]. The computed
hip centre ℎ (𝑊 ) is finally sent back to the HoloLens for
AR rendering. As more points are collected, the latest
computed hip centre is displayed as a ball in a solid yellow
colour, and the previous estimates are kept on display
in fading yellow colours (Figure 3). When additional
landmarks do not shift the current trail of hip centres,
convergence is reached. The user can confirm the final
hip location by voice command.

Fig. 3: AR interactive feedback to guide landmark collec-
tion for hip centre measurement.

.
EVALUATION AND RESULTS

As shown in Figure 4, we used a highly accurate optical
tracking system 𝐴 (FusionTrack 500, Atracsys LLC) as the
ground truth to evaluate the HRC measurement accuracy.
An IR reflective marker 𝑀 𝑓 was pinned into a phantom
leg. The optical tracker 𝐴 tracked the movement of 𝑀 𝑓

during leg rotation, from which the ground truth hip centre
ℎ (𝐴)
𝑔𝑡 was computed. To transform the computed location

back into the HoloLens world frame, another marker 𝑀𝑑

was attached to 𝐷. The relative transformation 𝐷
𝑀𝑑
𝑇 was

calibrated offline using the method suggested in [8]. The
ground truth hip location can be expressed by:

ℎ (𝑊 )
𝑔𝑡 (𝑡) = 𝑊

𝐻𝑇 × 𝐻
𝐷𝑇 × 𝐷

𝑀𝑑
𝑇 × 𝑀𝑑

𝐴𝑇 (𝑡) × ℎ (𝐴)
𝑔𝑡 (2)

The error is defined as the positional difference between
ℎ (𝑊 )
𝑔𝑡 (𝑡) and ℎ (𝑊 ) (𝑡). As shown in Figure 5, the average 3D

error is [1.21, -8.45, 8.80] mm. According to [8], such
an error in hip centre estimate would result in an overall
registration accuracy that would be acceptable for clinical
deployment.

CONCLUSIONS AND DISCUSSION
This work presents an AR-assisted markerless system

that allows interactive HRC measurement avoiding the
need for additional invasive markers. Proof-of-concept
performance was tested on a phantom leg by simulating
HRC measurement during an open TKA. The AR display
helps the surgeon be aware of how the past collection
distributes in space so that he/she can intuitively direct
the limb to evenly cover a wide spread for reliable HRC
calculation. Furthermore, the computed hip location can
be easily checked by comparing it to the naturally ob-
served limb. Our experiment shows promising accuracy

Fig. 4: Transformation of ground truth hip centre obtained
by optical tracking for accuracy evaluation.

.

Fig. 5: AR interactive feedback to guide landmark collec-
tion for hip centre measurement.

.

with a much more straightforward and immersive work-
flow. In the future, we will integrate the suggested HRC
measurement into a complete knee surgical procedure
to demonstrate the benefit brought by an AR display
and markerless tracking on surgical workflow and patient
safety.
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INTRODUCTION
Twin-to-Twin Transfusion Syndrome (TTTS) is a rare

pathology that may affect monochorionic twin pregnan-
cies. TTTS depends on the unbalanced blood transfer from
one twin (the donor) to the other (the recipient) through
abnormal placental vascular anastomoses. Currently, the
treatment for TTTS consists of the photo-ablation of
abnormal anastomoses in fetoscopic laser surgery [1].
Residual anastomoses still represent a major complica-
tion [2] and their identification is not a trivial task.
Visual challenges such as small field of view, amniotic
fluid turbidity, low-resolution imaging, and unfavourable
views are due to the position of the insertion site for
the tools. To support surgeons, researchers are working
on vessel and placenta segmentation [3], [4]. Recently,
[5] presented the first multi-centre large-scale dataset to
improve the current state-of-the-art in segmentation and
registration in fetoscopy. However, to date, there is no
work in the literature on anastomosis detection. There is
also no available datasets for this task.

This work aims to develop a deep-learning-based frame-
work for anastomosis detection in intra-operative feto-
scopic videos. Considering the challenges of labelling
anastomoses, we propose a weakly-supervised strategy by
training a multi-task convolutional neural network (CNN)
for (i) segmenting vessels in the fetoscopy frame and
(ii) classifying frames as containing anastomoses or not.
Relying on class activation mapping (CAM), anastomosis
detection is then accomplished.

Non Pathological Pathological

Fig. 1: A sample of the anastomoses dataset. Black
bounding boxes highlight the pathological anastomosis.

MATERIALS AND METHODS
In this work, we want to exploit the representation learn-

ing capability of CNNs for weakly supervised anastomoses
detection. CNNs can extract meaningful features from
data, and CAM can be used for investigating the CNN

visual encoding process and localising anastomoses. As
shown in Fig. 2, the proposed framework is composed by
a backbone and three branches. The backbone comprises
(i) a dense-feature encoder and (ii) a Feature Pyramid
Network (FPN) decoder. The decoder is connected to a Y-
shape head consisting of two branches, for vessel segmen-
tation and frame classification. The localisation branch
extracts activation maps from the last three segmentation
blocks of the encoder to perform anastomoses detection
with CAM.

The encoder is based on the DenseNet121 architecture.
Dense connectivity in DenseNet is implemented to im-
prove gradients’ flow among layers, avoiding the prob-
lem of gradient vanishing in deeper layers and improve
network training efficiency. The decoder is designed as
FPN to leverage feature hierarchy and semantics learning
at different scales. All the feature maps from each pyramid
level in the FPN are processed by a segmentation block to
produce rough segmentation maps, one at each pyramid
scale. The segmentation block contains a 3×3 convolution
followed by Group Normalisation and ReLU activation.
The partial segmentation maps are summed up and pro-
cessed by the Y-shape head. The segmentation branch in
the Y-shape head consists of 1×1 convolution for channel
reduction, bilinear upsampling to recover th27e original
size, and sigmoid activation. The classification branch is
made of a Global Average Pooling (GAP) layer followed
by three fully connected layers. We add one dropout layer
to each of the first two layers to regularise the training
process [6]. In the localisation branch, we compute the
weighted sum of all Gradient-weighted Class Activation
Map (GradCAM) for the segmentation blocks in the
decoder, which represents the feature map response at each
scale. The overall activation map is then rescaled using
MinMax scaling, and a threshold is applied to extract
regions of interest that may contain anastomoses. We
experimentally found that 0.75 is a reasonable threshold
value.

A. Experimental protocol
To develop and test our framework, we built a dataset

by merging a publicly available dataset1 presented in [4]

1https://www.ucl.ac.uk/interventional-surgical-sciences/
fetoscopy-placenta-data
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Fig. 2: Overview of the proposed WAYNet framework.

TABLE I: Results of the ablation studies for the backbone network. In the baseline the Segmentation Head is missing.
Classification Segmentation Detection

Acc Rec Prec IoU IoU
Baseline ResNet50 0.6200 0.0570 0.7500 - 0.0424

Fine-Tuning ResNet50 0.6827 0.5377 0.6064 0.5770 0.0062
Dense 0.7380 0.5849 0.6966 0.5426 0.0217

Multi-Task ResNet50 0.9889 0.9811 0.9905 0.5976 0.0570
Proposed 0.9668 0.9906 0.9292 0.5314 0.2206

that we extended with additional data collected at Istituto
Giannina Gaslini, Italy for a total of 18 TTTS procedures.
We manually extracted 1476 frames and asked an expert
clinician to annotate vessels and the presence of patholog-
ical anastomoses in each frame. 27.6% of frames includes
pathological anastomosis. A sample of our dataset is
shown in Fig. 1. For testing the detection performance,
we further annotated 83 frames from 3 additional patients
with bounding boxes. The overall framework was trained
end-to-end using a combination (𝐿Overall) of two loss
functions. 𝐿Overall is defined as: 𝐿Overall = 𝐿𝑆 + 𝐿𝐶 , where
𝐿𝑆 is the binary cross entropy used for the segmentation
task and 𝐿𝐶 is the weighted cross entropy used for the
classification task. We used a weighted cross entropy to
account for class imbalance.

We evaluated the performance of the proposed frame-
work in terms of accuracy (𝐴𝑐𝑐), recall (𝑅𝑒𝑐), and
precision (𝑃𝑟𝑒𝑐) for the classification task. As for the
segmentation and detection task, intersection over union
(𝐼𝑜𝑈) was utilized. A Wilcoxon test assessed the statistical
significance of the results. In the ablation study, we
investigated several configurations and training strategies
for our framework. Baseline consists of a classification
network based on ResNet50. In fine-tuning configurations
(ResNet50 and Dense-FPN), we trained the backbone on
vessel segmentation and then on the classification task,
while in Multi-Task tests (ResNet50 and Proposed), we
trained the backbone on both tasks end-to-end.

RESULTS
As shown in Table I, the proposed framework achieved

good performance in classification (Acc = 0.9668, Rec =
0.9906, Prec = 0.9292) and segmentation (IoU = 0.5314).
For anastomoses detection we achieved an IoU = 0.2206.
Our framework performed comparably with the other

tested approaches for the classification and segmentation
task, while it showed by far the best performance for the
anastomosis detection task.

CONCLUSIONS AND DISCUSSION
This paper presented a first step towards the automatic

localisation of anastomoses in TTTS surgical videos. Our
framework showed promising results and outperformed
tested approaches for weakly-supervised anastomoses de-
tection. The vessel segmentation and anastomoses classi-
fication performance of our framework is reliable, with
few misclassifications. Sometimes pathological and non-
pathological anastomoses may look very similar, affecting
classification performance, especially with such small
datasets. Contrastive learning approaches might tackle this
challenge. However, the high imbalance between classes
could be an issue for those techniques. Collecting more
data and data stratification are reasonable improvements
to our experimental protocol. Despite achieving promising
results, there is still work to do to tackle the complexity
of the task.
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INTRODUCTION
The research interest in Robotic-assisted Minimally

Invasive Surgery (R-MIS) is shifting from teleoperated
devices to autonomous robots and to the development of
autonomous support systems for the execution of repetitive
surgical steps, such as suturing, ablation, needle biopsy
and microscopic image scanning [1]. Needle biopsy [2]
is currently the most reliable and widely used technique
to confirm the suspicion of prostate cancer (PCa), the
second most common cancer worldwide and the cancer
most common in men [3]. Early and reliable detection of
PCa has a huge impact on the successful treatment of high-
risk patients and on avoiding overtreatment in low-risk
patients. In [4] we presented PROST, a robotic device for
prostate biopsy, with the aim to introduce some autonomy
during surgery in order to assist surgeons. In this paper,
we propose a planning procedure to optimize the biopsy
in terms of both patient recovery and prostate coverage.
The proposed method applies a voxel based spatial

subsampling to the prostate volume and uses graph theory
to select the lowest number of insertion points that reach
the targets to be analyzed. In this way we optimize the
choice of the entry points and minimize the duration of
the intervention. However, the needle insertion is manual
so that the surgeon has complete control of the surgical
task.

MATERIALS AND METHODS
We propose a planning procedure which consists of two

phases:
• We start with a voxel based spatial subsampling of the
prostate to obtain targets (𝑡𝑖...𝑛 ∈ 𝑇) throughout the
volume, as shown in Fig. 1. The targets are calculated
as the centroids of the voxels;

• We divide the entry (𝑝𝑖...𝑚 ∈ 𝑃) and the target
(𝑡𝑖...𝑛 ∈ 𝑇) points in a weighted bipartite graph, as
shown in Fig. 2.

Given the number 𝑚 of entry points, our goal is to try
to cover the highest number of targets with a single entry
point. The entry points are chosen on the plane of the
perineum, and their position is taken by the kinematics
of the robot. Once we have the position of the entry
points and target points we construct the weighted bipartite
graph. When the algorithm starts, it searches for a node
with cardinality 𝐶 = 𝐾 − 𝑙, where 𝐾 is the number of
targets and 𝑙 are the cycles performed. If one node is
found then that entry point reaches all targets and is the

solution. If it does not exist, it searches for a node with
𝐾 − (𝑙 + 1) cardinality, if it exists, this node is part of the
solution and we check which target does not touch and
find any entry point that reaches it. If we don’t find it, we
have to search through all the combinations of nodes that
touch each target, focusing on cardinality. The solution is
represented through the incidence matrix. The elements
of the matrix, which therefore represent the weights, are
computed using the optimization parameters for the type
of intervention (e.g. biopsy, cryoablation, vertebroplasty,
kyphoplasty, etc).
One of the most important optimization parame-

ter,which consequently has a greater weight, is the robot
kinematic. We check if the target is in the robot workspace
and if is reachable by the instrument/needle. Another
optimization parameter is the presence of obstacles, such
tissues or veins, to avoid in order to do not compro-
mise the intervention. Also the execution time: a shorter
intervention has multiple benefits like lower costs. In
case of biopsy, we must consider the stiffness of the
tissues we pass through to reach the target avoiding needle
deflections, also taking into account the length of the
needle defines the depth of the targets that can be reached.
After the incidence matrix has been constructed, we

choose as first entry point the one with the highest
cardinality, sorting on the targets with a lower weight in
the matrix. This means we reach the easier targets first.

EXPERIMENTAL SETUP

The experimental setup consists of the PROST robotic
system prototype [4] which integrates the US Ultrasonix
system which allows us to obtain the volume of the
prostate.
To validate our algorithm we used a synthetic phantom

representing a prostate. The phantom was also acquired in
computed tomography (CT) so that a 3D volumetric med-
ical image can be available for image fusion with those
acquired in real-time. The semi-automatic segmentation
approach provided by 3D Slicer [5] is exploited to extract
the contour of the prostate.
Table I shows an example of the incidence matrix

created with our algorithm during a biopsy procedure with
3 entry points. The weights of the matrix were calcu-
lated using kinematics and execution time as optimization
parameters. In this case, we voxelise the volume in 14
blocks, we extract the centroid of each block representing
14 targets (𝑡1..14). In the incidence matrix we have column
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𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14
𝑝1 64.29 0 56.43 64.70 63.47 0 55.29 53.05 54.64 65.47 0 59.10 56.94 53.62
𝑝2 64.74 0 56.97 0 65.37 0 57.23 54.99 56.37 0 0 59.64 58.77 55.32
𝑝3 64.03 0 55.82 64.10 63.10 0 54.27 51.80 53.49 65.06 0 57.38 56.17 52.99

TABLE I: Incidence matrix of the needle biopsy experiment.

Fig. 1: Example of 2D projection of the voxel representa-
tion in a single slice.

of zeros when a target is not reachable from any entry
point (𝑡2, 𝑡6, 𝑡11).
In this experiment we have both 𝑝1 and 𝑝3 with the

same cardinality (𝐶 = 11), but we choose as solution 𝑝3
since the sum of the weights of the incidence matrix for
that entry point is less than other entry points. Once we
have the entry point we sort the target list to obtain the
final planning.

𝑃𝐿𝐴𝑁 (𝑝3) = (𝑡8, 𝑡14, 𝑡9, 𝑡7, 𝑡3, 𝑡13, 𝑡12, 𝑡5, 𝑡1, 𝑡4, 𝑡10)

CONCLUSIONS AND DISCUSSION

In this work, we proposed a planning procedure which
optimize the choice of entry points in reaching as many
targets as possible. We tested our algorithm in simulation
and on a synthetic phantom for a needle biopsy procedure.
The use of a lower number of insertion points can reduce
trauma to the patient without sacrificing the accuracy of a
template biopsy; it also leads to a quicker execution. We
aim to increase the accessibility of high-quality prostate
biopsy thorough compatibility with outpatient settings,
quick setup and fast intervention time independently of
the expertise level of the operating physician. The use in
outpatients’ clinics will potentially allow time and cost
reduction of the procedure in comparison with template
biopsy, which is currently carried out in the operating
room.

Fig. 2: Bipartite graph: entry points 𝑝𝑖...𝑚 on the left (blue)
and target points 𝑡𝑖...𝑛 on the right (red). The green lines
represent the solution, therefore the connection between 𝑝
and 𝑡 with less weight.
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INTRODUCTION 

Suturing is a fundamental task in ophthalmic surgery. 

Focused training is necessary to master technical (tissue 

handling, knot tying) and cognitive (appropriate selection 

of instruments, forward planning) skills and develop a 

high level of hand-eye coordination required for 

ophthalmic microsurgical procedures. Formulating novel 

objective measures of operational performance will be 

beneficial for training in ophthalmic microsurgery. 

Capturing eye movements and points of focus while 

performing surgical tasks can provide meaningful 

information to assess the operator’s technical and 

cognitive skills and overall performance. The locations 

of gaze focus and spatial distribution of fixations embed 

valuable information for assessing the use of instruments, 

the sequence and quality in executing subtasks, and 

possibly the level of hand-eye coordination the operator 

demonstrates. This study explores eye-tracking for 

developing performance metrics for suturing tasks in 

ophthalmic surgery and preliminary analysis focuses on 

the total duration of executing a surgical suture and its 

subtasks. It also introduces the spatial distribution of 

fixations as a feature to characterize the level of surgical 

expertise. 

Eye-tracking has been used as a tool for skill analysis in 

a variety of different surgical applications. Copogna et al. 

[1], compared anesthesiologists of different expertise 

levels performing an epidural block. Attentional heat-

maps and gaze plots showed different gaze dispersion 

between the groups. Causer et al., showed that quiet eye 

training significantly improved learning of surgical knot 

tying compared to a traditional technical approach [2]. In 

[3], expert and novice neurosurgeons performing under a 

surgical microscope were examined, concluding that 

experts spend more time fixating on the region of interest 

before performing an action. Lee et al., used eye-tracking 

data to identify gaze patterns and blind spots in a real-

time EGD [4].  

While efforts have been made to analyze gaze patterns 

[3],[4], it has yet to be developed a metric that can be 

used to statistically compare the spatial distributions of 

gaze focus points, a rather useful tool to evaluate the skill 

level of groups with different expertise. 

MATERIALS AND METHODS 

This study was conducted in the Royal College of 

Ophthalmologists (London, UK) during the training 

course “Introduction to Ophthalmic Surgery”. It includes 

two one-hour long training sessions for practicing 

surgical knots. Prior to practicing, participants were 

educated through lectures, videos, and live 

demonstrations. In the first session, attendees were 

instructed to practice the surgical knot on a standard 

suture training board, where on average they completed 

five knots and continued with more demonstrations 

before the second practice session. 

Equipment 

For capturing eye movements, the Tobii Pro Glasses 2 

(Stockholm, SWE) was used and deployed as shown in 

Fig. 1(a). Tobii glasses use near-infrared illumination to 

create reflection patterns on the cornea and pupil of the 

subject’s eye, while image sensors are used to capture 

images of the eyes with the reflection patterns. Image-

processing and a physiological 3D model of the eye are 

then used to estimate the point of gaze within the field of 

view (FoV) provided by a camera at the front side of the 

glasses. Time-stamped gaze focus points (pixel 

coordinates) are synchronized with the FoV video 

recording and overlayed (red circle) as shown in Fig.1(b). 

Participants 

We recruited 20 volunteers, 9 experts – faculty members 

delivering the course and 11 novices – trainees attending 

the course, in the early stage of their residency training. 

Of the 11 novices, we selected 6 from the first session 

and 5 from the second one, to compare novices that had 

more time to practice. All participants were asked to 

execute a single surgical knot on the training board, 

whilst wearing the eye-tracking glasses. After obtaining 

basic familiarity with the task, we recorded one video 

from each participant, and calibration took place before 

every recording. 

Dataset and Annotation 

A surgical knot consists of two major subtasks, as shown 

in Fig. 2. These are needle passing and knot tying, where 

typically surgeons tie three knots to secure the suture. By 

reviewing the videos, we annotated the start and end 

moments of each subtask, as shown in Fig. 2.  

 
Figure. 1. (a) Experimental setup, (b) Snapshot of a video 

showing the wearer’s field of view along with gaze focus point. 
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Inspired from the literature [1],[2], we then calculated i) 

the total duration of the entire suturing task, which 

commences with the needle passing and ends with suture 

cutting; ii) the duration of the needle passing subtask, as 

well as iii) the duration of tying the first knot. These time-

based metrics were further used for statistical analysis. 

 
Figure. 2. Annotation of a surgical suture task from our dataset. 

In order to aggregate gaze focus points in a single image, 

we should assume that the subject’s FoV doesn’t change. 

During knot tying head movements were limited, in 

contrast with the needle passing phase, hence we assume 

that the FoV remained mostly the same. This allowed us 

to investigate the spatial distribution of gaze samples and 

fixations during that phase. Gaze samples are classified 

as part of a fixation, if the velocity of directional shifts of 

the eye is below 30 visual degrees per second. The 

distribution of fixations is illustrated as a heatmap plot 

(see Fig. 3) in which warmer colors signify a larger 

concentration of fixations observed on that point. From 

Fig. 3, it is evident that differences in the spatial 

distribution of fixations between the expertise groups 

exist. Experts’ fixations are clustered together in smaller 

areas than novices’ ones. To quantify the spatial 

distribution of fixations during the knot tying phase., we 

introduce fixation sparsity, as the ratio of the total 

number of color-valued pixels (locations that we obtain 

fixations) in the heatmap divided by the image resolution, 

1080×1920.  

RESULTS 

The four variables, total duration of the task, needle 

passing duration, first knot tying duration, and fixation 

sparsity were analyzed using the Mann-Whitney U-test 

with p = 0.05 significance level (two-tailed). Results are 

summarized in Table 1, where one can observe 

significant differences between the groups of experts and 

novices. No significant differences (p > 0.05) between 

novices from the first session and the second one were 

found. 

 
Table. 1. Mann-Whitney U-test results with p = 0.05 

significance level (two-tailed). 

Dependent 

Variable 

Median/Min/Max 

p-value 
Experts 

(𝒏𝒆 = 𝟗) 
Novices 

(𝒏𝒏 = 𝟏𝟏) 

Total duration 70.12/46.36/83.32s 98.08/55.6/191.2s 0.001 

Needle passing 

duration 
19.04/35/18.96s 30.12/15.36/79s 0.04 

1st Knot tying 

duration 
12.68/5.6/18.96s 16.44/13.7/40.24s 0.006 

Fixation 

sparsity 

0.0362/0.0215/ 
0.0486 

0.0516/0.0216/ 

0.0697 
0.008 

 
Figure. 3. Example of the spatial distribution of fixations 

during knot tying (a) expert surgeon, (b) novice surgeon. 

CONCLUSION AND DISCUSSION 

In this work, we compared expert and novice surgeons 

based on their duration in executing a surgical knot as 

well as its different subtasks. Overall, expert surgeons 

were found to be significantly faster than their novice 

counterparts. Our analysis on the spatial distribution of 

fixations concluded that experts focus their gaze almost 

entirely on areas of interest (e.g., suture, tools) when 

tying the knots, resulting in the distribution, being 

concentrated in the area around the suture (see Fig. 3a). 

On the contrary, novices’ distribution is more dispersed, 

with fixations occurring across a larger area (see Fig. 3b). 

A possible explanation is that novices need to visually 

verify that they are using the appropriate instruments. We 

also found that when tightening the knot, novices focus 

their gaze on the tools pulling the thread, rather than on 

the suture. Analyzing the fixation distribution can 

indicate areas of high/low interest, and patterns 

associated with levels of expertise, contributing towards 

novel metrics for skill assessment in ophthalmic surgery. 

These interesting observations can potentially lead to 

objective metrics for assessing the level of hand-eye 

coordination.  Future work will focus on developing 

novel eye-tracking features and examining their 

correlation with standardized manual assessment, as well 

as on algorithms for predicting surgical skills. 
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INTRODUCTION

Computer Assisted Surgery (CAS) has expended over
the years and is now commonly used in orthopedic
surgery. It was shown that CAS improves functional
outcomes compared to conventional non-assisted surgeries
[1]. However, to implement such assistance, a precise
registration between the patient’s preoperative CT-scan
data and the patient’s intraoperative data in the operating
room (OR) is required.

Artificial markers are the gold standard for this registra-
tion but imply a lot of drawbacks such as patient discom-
fort, hospital flow complications, etc. Surface-based regis-
tration methods are preferred and are usually implemented
in the OR. The goal is to register the preoperative patient’s
bone surface data extracted from a CT-scan volume with
the corresponding intraoperative surface data digitized
with a navigated tracked stylus.

However the use of tracked stylus for surface dig-
itization is not always accurate due to its calibration
precision and tissue deformation upon contact. Moreover,
for large surface acquisition, it is time consuming and user-
dependent.

Camera-based solutions (laser range scanner, time-of-
flight cameras, structured-light cameras, etc. ) for patient’s
bone surface digitization have become quite common
nowadays in CAS since they are faster, contactless and
have less sterilisation constraints than tracked stylus [2].
They allow to acquire thousands of points in a few sec-
onds without any contact. For example, these advantages
inspired the application of structured light [2] in spinal
surgery. However, precise camera calibration, namely
"Hand-Eye" (H-E) calibration, is necessary to localize the
camera’s acquired data in the physical OR space. This
calibration consists in finding the transformation between
the camera and the robot end-effector that handles it or
between the camera and a tracked marker fixed to it: the
problem remains the same.

For 3D cameras, it has been shown in [3], [4]
that exploiting the depth information gives better H-
E calibration results than exploiting only the RGB
information. In this context, different methods based on
the use of camera depth information have been proposed
in the literature. Khan et al. [3] proposed an iterative
method based on the palpation, with a probe handled
by a robot, of a complex calibrated wavy 3D object to

digitize and register its surface in the robot frame. The
surface of this 3D object is also digitized with the optical
3D camera. The desired H-E calibration has been thus
obtained by registering the obtained two sets of points.
Nevertheless, the obtained results depend on the probe
calibration precision, the quality of palpation and the
quality of 3D-printing of the calibrated object. Yang et al.
[4] proposed to use a simpler 3D object (namely a sphere)
for the H-E calibration. In this method, thanks to the
depth information, the 3D object has been digitized and
its center has been computed using a RAndom SAmple
Consensus (RANSAC) algorithm. This allows to estimate
the translation between the camera and the 3D object and
compute the H-E transformation thanks to a non linear
optimization. Their method gave non-satisfying results
(2.864 mm) in accordance with surgical application.

In our study, a fast and automatic method adapted to
optical 3D cameras and based on a 3D printed phantom
is presented. This phantom is separated from the camera to
reduce printing errors and deformation. It was thought to
be as simple as possible to ease printing and registration.
The proposed method is easy to implement and does
not require any experience from the user. It also gives
precision compatible with surgical application.
MATERIALS AND METHODS

The proposed camera calibration method is represented
in Fig.1 where bTa is the transformation from the coordi-
nate system a to coordinate system b, and 𝑊 , 𝑃, 𝐶, 𝑀𝑝 ,
and 𝑀𝑐, represent respectively the frames attached to the
world (localizer), the phantom, the camera, the marker on
the phantom, and the marker on the camera. The marker
was fixed on the camera with a 3D-printed support adapted
to the camera and to the marker. Our objective is to
compute the transformation CTMc and thus perform the 3D
camera H-E calibration. The proposed approach is based
on the digitization and registration of a tracked 3D-printed
phantom equipped with a marker. The tracked phantom
was designed as one compact single piece to be as simple
as possible to be produced: a cube with a marker fused to it
to minimize deformations and cubic shapes on its faces to
facilitate their digitization and allow precise registration.
The requested H-E transformation can thus be computed
with the following equation:

CTMc=CTP
PTMp

MpTW
WTMc

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 43



In accordance with Fig.1, the transformations of this
equation can be obtained separately:

• CTP is computed with an Iterative Closest Point (ICP)
registration of the phantom CAD (Computer Aided
Design) model expressed in 𝑃 with the phantom point
cloud generated by the camera expressed in 𝐶.

• PTMp is known by CAD model of the calibration
phantom.

• MpTW and WTMc are given by the optical tracking
system.

This method has the advantage to be simple (it only
requires the design and printing of the phantom), fast
and does not necessitate any experience from the user.
It is easy to use as the user intervention is requested
only for ICP initialization: he/she has only to click on
three characteristic corresponding points on the phantom
CAD model and on the camera’s point cloud to perform a
first coarse registration. Those points are usually the cube
corners that are easy to find.

Fig. 1: Set up for camera calibration using a 3D-printed
phantom and a localizer

RESULTS
To evaluate the camera calibration precision, another

tracked 3D-printed phantom was designed and used as a
validation geometry. This validation phantom consists in
a marker and a cube designed as one single piece with
three validation points on its faces. Each validation point
corresponds to the center coordinate of a holes (a half-
sphere of ∅ 1 mm) engraved at the surface of the phantom.

The position of each hole in the camera frame, noted
{𝐶𝑃𝑖}𝑖=1:3, is obtained using the CloudCompare software
(www.cloudcompare.org) by a mouse click on the center
of hole as it is clearly visible in the screen. The position
of each hole in the marker frame, noted {𝑀𝑝𝑃𝑖}𝑖=1:3,
is known by CAD model design. The 𝑀𝑝𝑃𝑖 points are
reprojected in the camera coordinate system through the
localizer information and the found H-E transformation
using 𝐶T𝑀𝑐

McTW
WTMp

𝑀𝑝𝑃𝑖 .
To evaluate the calibration precision, we thus compute

the euclidean distance between the reprojected and ob-
served holes:

| |𝐶𝑃𝑖−𝐶T𝑀𝑐
McTW

WTMp
𝑀𝑝𝑃𝑖 | |

We performed 25 calibrations followed by a system-
atic validation step after each calibration process. The

Fig. 2: Distances between detected and registered points
on 25 calibrations

global mean distance between the observed and repro-
jected points was 0.324 mm with a standard deviation of
0.206 mm. More detailed results for each validation point
are given on Fig.2. Distances between the observed and
reprojected points were 0.388 ± 0.234 mm, 0.279 ± 0.199
mm, 0.303 ± 0.169 mm for point 1, 2 and 3 respectively.
It is important to notice that all the values are inferior
to 1 mm. Moreover, the calibration method is fast: the
whole procedure, including point cloud generation, user
clicks for ICP initialization, and ICP registration, takes on
average 37.5 ± 2.8 s.

CONCLUSIONS AND DISCUSSION
Using a 3D-printed phantom for 3D camera calibration

proved successful to reduce calibration time and ease
the process while being precise. The proposed approach
gives precision compatible with surgical applications (less
than 1 mm). As a future work, even if it is fast, the
process could be sped up by more automatization. Indeed,
the manual ICP initialization by point picking could
be replaced by Principal Component Analysis (PCA) or
other coarse automatic registration method. Besides, the
validation procedure could also be improved to make
it independent from the user because manual clicking
could introduce a bias in the error evaluation. Finally a
quantitative comparative study with other methods should
be done.
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INTRODUCTION
Soft robots provide the inherent advantage of being

able to conform with their environment, which renders
them suitable for endoluminal interventions. For delicate
surgical scenarios, however, this compliance can pose
challenges, particularly when there is a human in the loop
interacting with the robot.

In our previous work we have presented a fluid-driven
endoluminal soft robot which shows the potential to aid
needle guidance through the ear canal when delivering
intratympanic injections [1]. Whilst the robot is able to
effectively suppress small motions induced in the needle
at its proximal end by the operating clinician during
insertion, larger needle motions could deflect the robot
and thus move it away from the desired insertion point. A
robust method for estimating when needle motion occurs
or is imminent is therefore required.

Although needle motion, which induces motion in the
soft robot, could be estimated with the on-board camera,
the rate of detection is limited by camera framerate and the
subsequent detection algorithm. Moreover, needle motion
has to have occurred to be detectable through vision,
therefore indirect measures predicting motion before it
manifests in the scene could be advantageous.

In this work we find an alternative approach by pre-
dicting needle motion through pressure variation in the
driving fluid of the soft robot. We demonstrate that
external pressures applied to the ballooning fluid actuators
of the soft robot can be deduced and that it is possible to
infer needle motion by relating the applied forces to the
motion of a significant landmark point in the image.

MATERIALS AND METHODS
The soft robot used in this study is actuated by balloon-

ing membrane actuators, which are employed to center
the robot within the surrounding lumen and through
differential actuation steer the robot. From our previous
work, the prototype has been refined to achieve a greater
range of motion by reducing the distance between the
two actuation stages and increased actuator diameters. An
overview of the application and the current prototype are
shown in Fig. 1a) and b) respectively.

The robot is actuated by a hydraulic pump system.
It is comprised of stepper motor-driven syringe pumps
for which control commands are generated by a motion
controller (Trinamic TMCM-6214). High-level control of
the system is achieved by a laptop running ROS. Pressure

Fig. 1: Rendering (a) and prototype (b) of a fluidic-driven
soft robot for needle guidance through the ear canal

sensors (MPRLS, Honeywell, United States) are added to
the fluid circuit through custom 3d-printed connectors.
Pressure signals from the sensors are compiled by a
microcontroller (Teensy 4.0, PJRC, United States) at a rate
of 100Hz. The robot is equipped with a camera (MD-
V1001L-91X, Misumi Electronics Corporation, Taiwan).
The target insertion point is inferred at a rate of approx.
15Hz [1].

Prior to puncturing the tympanic membrane, the distal
motion of the needle is solely based on the forces and
moments applied to the soft robot. As we’ve shown in our
previous work [2], in the reference frame of the robot,
the quasi-static relationship between external force and
hydrostatic pressure variation can be written as

𝒘𝑒𝑥𝑡 = 𝑯 · 𝑷𝑒𝑥𝑡 · �̂� = 𝑯 · (𝑷𝑡𝑜𝑡 − 𝑷𝑖𝑛𝑡 ) · �̂� (1)

Where 𝒘𝑒𝑥𝑡 = [ 𝒇 𝑒𝑥𝑡 , 𝒕𝑒𝑥𝑡 ]𝑇 is the external wrench applied
to the soft robot in its frame of reference {𝑠𝑟}, 𝑷𝑒𝑥𝑡

the pressure variation in the membrane actuators caused
by the external force, 𝑷𝑡𝑜𝑡 the measured pressure in the
respective fluid channels and 𝑷𝑖𝑛𝑡 the internal pressure in
the actuators caused by the introduced fluid volume. �̂� is
the approximate contact area between inflated membrane
actuator and surrounding lumen and 𝑯 the wrench trans-
formation matrix mapping from individual actuator frames
to robot frame such that
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Fig. 2: Internal pressure induced by actuator inflation with
the resulting interpolation (a) as well as the combined
interpolation for all six actuators (b)
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Where 𝑏 is the distance between the stages of actuation
and the center of the robot. To determine the internal
pressure 𝑷𝑖𝑛𝑡 , a calibration is performed by gradually
inflating all actuators and measuring the pressure re-
sponse. A 3rd order polynomial is used to interpolate
the internal pressure as a function of the fluid volume.
To account for unmodelled phenomena e.g. hysteresis, a
deadband is introduced in which the external pressure
variation is neglected. The deadband, which leads to a
marginal offset force when a contact is applied, is defined
as the maximum deviation between 𝑃𝑎𝑐𝑡

𝑖𝑛𝑡 ,𝑖 = 𝑓 (𝑉𝑖) and
the acquired data. Estimation of external pressures under
varying fluid volume is demonstrated by positioning the
soft robot within a cylindrical tube and gradually inflating
the actuators until contact occurs.

Motion 𝑑𝑿𝑠𝑟 induced by the externally applied force
𝒘𝑒𝑥𝑡 is estimated by taking into account the directional
compliance 𝑪 of the soft robot such that

𝑑𝑿𝑠𝑟 = 𝑪 · �̂� · 𝑯 · (𝑷𝑡𝑜𝑡 − 𝑷𝑖𝑛𝑡 ) (3)

This is validated by placing the soft robot in a custom
ear canal phantom, pointing towards the desired needle
insertion point which is inferred from the camera image
as shown in [1]. The robot is manually displaced through
an inserted needle and the pressure response is monitored.
As rotation of the robot has a more significant impact on
the change in location of the insertion point, we show the
impact of only torque on the motion such that 𝑑𝑿𝑡𝑎𝑟𝑔𝑒𝑡 =
𝒖 · 𝑑𝑿𝑠𝑟 , where 𝒖 maps from local pose changes to the
movement of the tracked insertion point on the tympanic
membrane. The factors 𝒖, 𝑪 and �̂� are calibrated in the
given experiment using a number of sample points.

RESULTS
The calibration curve with its 3rd order interpolation

as well as the resulting deadband are shown for a single
actuator in (Fig. 2a)) with resulting interpolations (Fig.
2b)). The calibrated system is tested by placing the robot
in the center of a surrounding lumen and inflating all
six actuators simultaneously (Fig. 3). It can be seen that
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Fig. 3: Actuator inflation sequence in a cylindrical lumen
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despite continuous fluid flow into and out of the actuators
external pressure is only detected when an external con-
tact is present. The motion predicted from the estimated
torques (Fig. 4) tracks the measured target movement well
and errors are consistent across the investigated sequence.

CONCLUSIONS AND DISCUSSION
This work has demonstrated that external contact pres-

sure applied to fluid-driven, ballooning membrane actu-
ators can be measured intrinsically from fluid pressure
variation while varying actuator inflation volumes. We
have shown that these external pressures can be mapped
to forces and torques applied to the soft robot which in
return can be related to the robot motion. Whilst models
still have to be derived to accurately relate the applied
pressures to forces under varying contact area of the
ballooning actuators and to describe pose changes of the
robot as a function of these forces, our preliminary results
indicate that inferring motion from pressure variation is
possible for such type of endoluminal soft robot. For the
application of intratympanic injections, this methodology
could be used as a feedback for the steadiness of the needle
or as a means for active compensation of needle motion
through the robot.
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INTRODUCTION 

Feedback has been long recognized as a crucial factor in 

surgical education since it provides the trainee with the 

proper motivation and guidance towards proficiency [1]. 

Indeed, the use of error-based feedback during training 

has been proven to produce more accurate performance 

on subsequent trials [2]. In the recent years, simulation 

has come to the forefront for the development and 

refinement of surgical practical skills [3]. Among the 

advantages that simulation offers, there is the possibility 

to perform skill assessment objectively and provide 

feedback accordingly. Simulators can be either virtual or 

physical (mannequins). In the former, quantitative skill 

assessment is enabled by the easy extraction of an ample 

number of parameters and metrics from the virtual 

environment [4]. In the latter, the integration of sensors 

is used to sense metrics that are computer-based 

processed for skill assessment [5].  

In a recent project of ours, we designed and fabricated an 

anatomy-based simulator of pulmonary vein [6]. This 

simulator was integrated with soft sensors to detect the 

strain applied to the vein during its manipulation. In fact, 

excessive strain applied to delicate tissues as blood 

vessels may cause dramatic intraoperative events, such as 

major bleeding [7]. This aspect is even more fundamental 

with the spreading of robotic surgery, which requires the 

surgeons to learn the new control dynamics of the 

surgical instruments [8] and, usually, how to deal with 

the loss of haptic feedback [9]. In [6], we preliminary 

tested the effectiveness of a concurrent combination of 

acoustic and visual feedback based on the sensed strain. 

This feedback was proven to minimize the strain while 

performing vein manipulation by robotic control of the 

surgical instruments. In this work, we aim at comparing 

the effectiveness of acoustic versus visual feedback. 

MATERIALS AND METHODS 

Experimental setup – The experiments were performed 

using the da Vinci Research Kit, a research platform built 

upon the components of a first-generation da Vinci 

Surgical System [10]. Both the surgical instruments 

mounted on the patient-side robotic manipulators were 

single fenestrated forceps. The pulmonary vein simulator 

was integrated with a clamping system to pre-tension the 

vein as in physiological conditions and it was placed on 

a silicon-based board. In order to provide acoustic 

feedback, we took advantage of a buzzer (placed close to 

the surgeon console). In order to provide visual feedback, 

we used a tool wristband [11] mounted on the right 

instrument. Fig. 1 shows the experimental setup. 

Acquisition protocol – Twenty non-medical participants 

(all right-handed and with no experience in robotic 

teleoperation) participated to the study. All the subjects 

gave informed consent in accordance with the declaration 

of Helsinki. All the participants performed two tasks: 1) 

Task 1 – vein raising using the right instrument till 

feedback triggering and immediate dropping of the vein; 

2) Task 2 – passage of a vessel loop under the vein by 

using the left instrument, while raising the vein by using 

the right instrument and minimizing its strain by relying 

on the feedback. These tasks resembled the initial part of 

blood vessel stapling (common surgical step in several 

procedures). Task 1 aimed to assess feedback 

effectiveness while concentrating on the feedback itself. 

Task 2 (more complex than Task 1) aimed to assess 

feedback effectiveness while focusing on the task. A 

video showing a repetition of the tasks (that was also 

shown to each user before the experiment) is available at 

https://bit.ly/32dWSKB. Each participant performed 2 

repetitions of each task (Task 1 and Task 2): one with 

acoustic feedback and one with visual feedback. The 

 
Figure 1. a) The key components of the da Vinci Research Kit 

as a teleoperation system for robotic surgery; b) The task board 

including the sensorized simulator of pulmonary vein. The 

figure shows the tool wristband with active visual feedback. 
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order of these 2 repetitions was randomized (to mitigate 

possible learning effects on the results). The feedback 

was binary (active/inactive): it was active (1kHz tone for 

acoustic; red LEDs on for visual) all the time that the vein 

strain was over a pre-defined threshold (i.e., εthre=0.25). 

This threshold did not aim to be a realistic safety 

threshold (like we did in [6]), yet it was tuned to facilitate 

feedback activation (the effect of which we aimed to 

assess) in Task 1 and Task 2. 

Evaluation metrics and data analysis – Two objective 

metrics were then computed for each task repetition: 1) 

the time spent with active feedback (i.e., with strain over 

the abovementioned pre-defined threshold); 2) the total 

time to complete the task. Due to the small sample size, 

non-parametric statistical significance tests were used to 

compare the effect of the two kinds of feedback. The 

Wilcoxon signed-rank was used in MATLAB. The two 

metrics were selected as dependent variables, while the 

kind of feedback as independent factors. To also evaluate 

the subjective perception of feedback, all the participants 

were asked to express which kind of feedback they found 

most effective in Task 1 and in Task 2. 

RESULTS 

All the participants successfully completed the four task 

repetitions. Fig. 2 summarizes the results. In terms of 

objective metrics, the median value of both the time over 

threshold and the total time to complete the task was 

lower in case of acoustic feedback with respect to visual 

feedback. However, this difference was statistically 

significant just in case of time over threshold in Task 1 

(0.72 s vs. 1.1 s, p<0.001). In terms of subjective 

preference of the users, the acoustic feedback was 

perceived as more effective both in Task 1 (90% of the 

users’ scores) and in Task 2 (95%). 

CONCLUSION AND DISCUSSION 

In this study, we compared the effectiveness of a binary 

sensor-based acoustic versus visual feedback while 

performing vein manipulation by robotic control of the 

surgical instruments. The results highlighted a clear 

subjective preference of acoustic feedback by the users. 

Analyzing objective performance metrics, the major 

effectiveness of acoustic feedback was less distinct. Only 

when focusing on the feedback itself, the acoustic 

feedback was proven to significantly reduce the strain 

applied to the vessel. The total time to complete the task 

was similar, thus suggesting a similar intuitiveness of the 

feedbacks. In general, the lack of statistical significance 

could be also linked to the high variability in the data and 

relatively small sample size. These results can be useful 

in the refinement of our sensorized simulator as a training 

platform to optimize training on tissue manipulation in 

robotic surgery (in the funding framework of the 2022 

Intuitive Surgical Technology Research Grants). While 

this user study promoted the acoustic feedback as 

warning signal when exceeding a certain threshold, 

future work could shed light on the usefulness of a 

continuous information on strain values (e.g., by tone 

variation or multiple light colors).  
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Figure 2. Results associated to Task 1 (top) and Task 2 

(bottom). The color code refers to the kind of feedback: 

acoustic (A, green) and visual (V, orange). Diamonds refer to 

the median across users, while vertical bars stand for data 

variability (25th and 75th percentiles). White asterisks indicate 

a statistically significant difference between feedback types. 
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INTRODUCTION 

Colorectal cancer (CRC) is one of the leading causes of 

cancer related death worldwide [1] and colonoscopy 

represents the gold standard procedure for its diagnosis. 

However, conventional colonoscopy, where the scope is 

maneuvered by pushing, pulling and rotating it through 

the anus, remains a complex procedure to be carried out 

even for highly skilled physicians, so that undergoing 

such treatment is typically cause of discomfort and 

anxiety for patients. Since the survival rate of CRC 

patients is greatly impacted by the stage at which the 

disease is detected, the adoption of mass-screening 

programs of the gastro-intestinal (GI) tract has the 

potential to significantly reduce the CRC death rate.  

To overcome the drawbacks of standard colonoscopy, 

researchers are investigating robotic solutions to reduce 

both the complexity and the invasiveness of this 

procedure. Tethered robotic capsules with active 

navigation capabilities have attracted large interest in the 

research community: to reduce the discomfort 

experienced by the patient and increase the safety of the 

procedure [2] the propulsion force is applied locally 

rather than remotely as in the case of traditional 

colonoscopy. Furthermore, the GI tract presents various 

curves and the diameter of the lumen varies significantly 

throughout the organ, ranging from 25-40 mm in the anal 

canal to 60-70 mm in the ascending colon, reaching up to 

80 mm when insufflated with CO2. In addition, the walls 

of the colon are covered with a thin layer of mucus that 

further limits the friction force that can be achieved by a 

locally applied propulsion force, making navigation 

within the GI tract extremely challenging for small active 

devices.  

Robotic capsules relying on track-based locomotion [3] 

have shown good navigation capability thanks to the 

large propulsion force associated with wide contact area 

that the tracks can establish on the colon surface. The use 

of micro patterned soft tracks, such as those proposed in 

[4], significantly increased the traction force the system 

can provide. To characterise and validate the navigation 

capabilities of robotic systems for colonoscopy, testing 

inside either ex vivo colon or colon phantoms [5] are 

typically carried out. However, controlling accurately 

features such wall-pressing force to enhance propulsion 

or the camera position for an optimal field of view, can 

be challenging aspects of the design of these robotic 

capsules.  

In this work the design and the navigation capabilities of 

the latest integration of the SoftSCREEN system [6] are 

presented with testing conducted in a silicone-based 

colon phantom.  

 

 

MATERIALS AND METHODS 

The current 2.5:1 scale system, prototyped at this scale to 

validate the navigation capability, is a track-based, 

tethered robot which exploits silicone materials to enable 

diameter adaptability, thanks to the inflation of two 

toroidal chambers, and locomotion, relying on multi-

materials elastic tracks. The proposed design intends to 

be a low-cost and easy-to-control solution for 

colonoscopy. In Fig.1 a CAD of the SOFTScreen system 

is depicted showing the main components, including the 

two front cameras for visual inspection. A rigid chassis 

encases a brushless motor (315170, Maxon Motor™, 

Sashseln, Switzerland), paired with a 256:1 ratio gearbox 

and a rotatory encoder, connected to a worm gear: the 

rotation of the latter causes the six elastic tracks to evert 

from the front or the rear of the capsule based on the 

direction of rotation of the motor while, externally, the 

tracks are in contact with the surrounding walls of the 

colon and provide the propulsion needed for navigation. 

The toroidal chambers, surrounding the chassis and 

passing through the tracks are inflated with air 

accordingly to the local diameter of the colon to change 

the overall shape of the robot. This action works as a 

wall-pressing mechanism to control the force normal to 

the walls and therefore the tangential friction force 

applied by the tracks. At the same time, the use of two 

inflatable toroidal chambers ensures a stable alignment of 

the central axis of the system with the lumen axis, 

therefore the cameras are set at an optimal angle for 

inspection. From the previous design [6], rotational arms 

Figure 1 – CAD of the SOFTScreen System navigating the 

colon in partially inflated state. The system is comprised of six 

elastic tracks, two inflatable toroidal chambers, two cameras 

and two elastic bands to recall the two sets of six radially 

deployable arms 
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(see Fig. 1) have been also integrated in the exit and entry 

points of each track guide of the rigid chassis. Each set of 

six arms is kept closed and parallel to the internal guides 

in the non-inflated state by a circular elastic band but 

when the inflation of the chambers takes place, the arms 

are deployed radially. This compliant mechanism 

reduces the frictional loss between the tracks and 

chamber surfaces by reducing the contact pressure 

between the two that arises due to the longitudinal elastic 

deformation of the tracks. The elastic tracks are 

composed by three silicones of different Shore Hardness 

and all but the over moulded patterns on the top of the 

teeth are treated with an additive to reduce frictional 

losses. The base of the track is made of Dragon Skin™ 

30 (Smooth-On Inc., Easton, PA, US) a 30A silicone 

capable of withstanding the large deformations caused by 

the inflation of the chambers. The teeth are made of 

Smooth Sil™ 60 instead, a 60A silicone that ensures 

reliable mechanical transmission between the worm gear 

and the tracks. Then, a micro-patterned layer made of 

Dragon Skin™ FX Pro, a 2A Shore silicone is over 

moulded on the top side of the teeth to increase the 

adhesive force that propels the system. In addition, an 

elastic sleeve made of spandex with low-friction surface 

has also been incorporated to create a smooth interface 

between the tracks and the chambers.  

In terms of control, the user can independently control 

the inflation of each chamber with an external pressure 

regulator (VPPX, FESTO™, Esslingen am Neckar, 

Germany). The pressure feedback signals of the 

chambers are then processed via a 16-bit ADC 

(Adafruit™, New York, US) and displayed using 

Arduino UNO board. The inflation of the two chambers, 

fixed to flanges on the chassis 54 mm distant one each 

other, has been validated to vary the diameter of the robot 

from the non-inflated status of 60 up to 90 mm, as shown 

in Fig. 2, but deformation up to 120 mm can be achieved 

without failure. The SOFTScreen system navigating a 

silicone-based colon phantom of 80 mm of diameter is 

presented in Fig. 3. The scaled system has demonstrated 

good shape shifting capabilities within the phantom used, 

while being able of navigating the conduct.  

RESULTS 

The silicone phantom is used to evaluate the navigation 

capabilities of the system in a realistic scenario. The 

SOFTScreen system navigated the phantom lumen 

adjusting its diameter to reach the walls as shown in Fig. 

3. During the navigation test the phantom was held at the 

extremities by two circular supports to prevent the 

collapse of the silicone membrane and to simulate colon 

insufflation. During the navigation, inspection of the 

lumen was successfully conducted via the two front 

cameras which remained at an optimal angle during the 

navigation offering 360 degrees of the lumen as 

expected. The system was able to reach a navigation 

speed of 2.5 mm/s in the phantom, even though a peak 

speed of 5 mm/s has been reached in rigid pipes. 
 

CONCLUSION AND DISCUSSION 

The navigation of the colon represents a challenge for 

standard colonoscopic systems. A track-based propulsion 

mechanism paired with a wall-pressing actuator can 

overcome the limitations of traditional scopes and offer 

better solutions for navigating inside the colon. Not only 

has the SOFTScreen system with its active propulsion 

system and high compliance demonstrated to be able to 

adapt and navigate lumens of different sizes and surfaces, 

but its inherently compliance allows for local 

deformations of the profile to overcome obstacles and 

irregular surfaces which commonly occurs in 

colonoscopy. The validation of the presented larger scale 

robot has paved the way for the development and pre-

clinical testing of the 1:1 scale system.  
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Figure 3 – System diameter change (measured at the most 

external point of the tracks) for front and back chambers. 

Deformation measured with visual markers in the case of free 

inflation of the chambers (no contact with external walls). 

Figure 2 – The SOFTScreen capsule system inflating and 

navigating inside the lumen of the silicone colon phantom. 
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INTRODUCTION
Concentric tube robots (CTRs) are a class of continuum

robot that depend on the interactions between neighbour-
ing, concentrically aligned tubes to produce the curvilinear
shapes of the robot backbone [1]. The main application
of these unique robots is that of minimally invasive
surgery (MIS), where most of the developments for CTRs
have been focused. Due to the confined workspaces and
resulting extended learning times for surgeons in MIS,
dexterous, compliant continuum robots such as CTRs have
been under development in preference to the mechanically
rigid and limited degrees-of-freedom (DOF) robots used
in interventional medicine today. The precurved tubes in
CTRs, which are sometimes referred to as active cannulas
or catheters, are manufactured from super-elastic mate-
rials like Nickel-Titanium alloys with each tube nested
concentrically. From the base, the individual tubes can be
actuated through extension and rotation, which results in
the bending and twisting of the backbone as well as access
to the surgical site through the channel and robot tip.
Clinically, CTRs are motivated for use in brain, cardiac,
gastric surgery as well other procedures [2].

Due to tube interactions, modelling and control is
challenging. Position control for CTRs has relied on model
development, and although a balance between computa-
tion and accuracy has been reached in the literature [1],
there remain issues such as performance in the presence
of tube parameter discrepancies and the impact of unmod-

Fig. 1: State with start position and achieved goal,
𝐺𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 (black), desired goal, 𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑 (yellow), goal
tolerance, 𝛿(𝑡). Outer tube (green), middle tube (red) and
inner tube (blue).

Fig. 2: Joint variables 𝛽 and 𝛼 of a 3 tube CTR. 𝑠 is the
arc-length or axis along the backbone.

elled physical phenomena such as friction and permanent
plastic deformation. This motivates the development of
an end-to-end model-free control framework for CTRs.
One such model-free framework for control that is gaining
popularity is reinforcement learning (RL), a paradigm of
machine learning that necessitates an agent to output ac-
tion that interacts with an environment. The environment
then processes this action, and returns a new state and,
depending on the task, a reward signal. The task we give
the agent then is to control the end-effector Cartesian robot
tip position by means of actions that represent changes
in joint values. In Fig. 1 the components of the state
are shown in relation to a illustrated CTR and further
described in the next section.

In this work, we investigate how the rotational actuation
affects final errors during evaluation of the learned policy.
We find by avoiding constraining the rotational DOF of
each tube, the agent can freely rotate to achieve goals as
opposed to when constrained that result in more steps and
larger error metrics.

MATERIALS AND METHODS

First, the Markov Decision Process (MDP), a definition
required for RL algorithms is defined as follows.

• State (𝑠𝑡 ) : States are defined as the concatenation of
the trigonometric joint representation, Cartesian goal
error and current goal tolerance. As shown in Fig. 2,
rotation and extension of tube 𝑖 (ordered innermost
to outermost) are 𝛼𝑖 and 𝛽𝑖 . The trigonometric rep-
resentation [3] of tube 𝑖 is defined as:

𝛾𝑖 = {𝛾1,𝑖 , 𝛾2,𝑖 , 𝛾3,𝑖} = {cos(𝛼𝑖), sin(𝛼𝑖), 𝛽𝑖} (1)

In constrained rotation, 𝛼𝑖 for each tube is constrained
to be between −180◦ and +180◦ during each episode
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(a) (b)

Fig. 3: Achieved goal errors for constrained (a) and free
rotation (b) agents. Errors are shown in a polar plot with
𝛼1 rotation values and associated final errors.

Fig. 4: Reaching a desired goal of (20, 20, 100) mm with
a tip error of 0.98 mm. Starting position (red), desired
goal (green).

for generation of new goals. However, these con-
straints are non-essential in the trigonometric repre-
sentation during episode steps. The extension joint 𝛽𝑖
can be retrieved directly and has constraints

0 ≥ 𝛽3 ≥ 𝛽2 ≥ 𝛽1 (2)

0 ≤ 𝐿3 + 𝛽3 ≤ 𝐿2 + 𝛽2 ≤ 𝐿1 + 𝛽1 (3)

from the actuation side. Lastly, the current goal
tolerance, 𝛿(𝑡), is included in the state where 𝑡 is
the current timestep. A decay curriculum function
was used for 250, 000 steps out of the total 500, 000
training steps. The full state, 𝑠𝑡 , can then be defined
as:

𝑠𝑡 = {𝛾1, 𝛾2, 𝛾3, 𝐺𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 − 𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , 𝛿(𝑡)} (4)

• Action (𝑎𝑡 ) : Actions are defined as a change in
rotation and extension joint positions.

𝑎𝑡 = {Δ𝛽1,Δ𝛽2,Δ𝛽3,Δ𝛼1,Δ𝛼2,Δ𝛼3} (5)

• Goals (𝐺) : Goals are defined as Cartesian points
within the workspace of the robot. The achieved

goal, 𝐺𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 , is determined with the forward kine-
matics of the geometrically exact model [4] and is
recomputed at each timestep as the joint configuration
changes from the agents actions. The desired goal
𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑 updates at the start of every episode where
a desired goal is found by sampling valid joint
configurations and applying forward kinematics.

• Rewards (𝑟𝑡 ) : The reward is a scalar value returned
by the environment as feedback for the chosen action
by the agent at the current timestep. The reward
function used in this work is defined as:

𝑟𝑡 =

{
0 if 𝑒𝑡 ≤ 𝛿(𝑡)
−1 otherwise

(6)

where 𝑒𝑡 is the Euclidean distance | |𝐺𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 −
𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑 | | and 𝛿(𝑡) is the goal-based curricu-
lum function that determines the goal tolerance at
timestep 𝑡. The workspace and various state and
reward elements are illustrated in Fig. 1.

We train a policy for constraint and constraint-free
rotation in simulation using the base hyperparameters and
tube parameters as our previous work [5]. To evaluate each
policy, 1000 evaluation episodes where the desired goal
where randomized. Representing error metrics as mean
error ± standard deviation, The constraint-free agent had
error of 0.69 mm ± 0.24 mm with a success rate of 97.1%
while constrained agent had error of 0.94 mm ± 1.44 mm
and with a success rate of 87.7%. In our previous work
[5], where the rotation was constrained, evaluation showed
error metrics of 1.29 mm ± 0.18 mm and a success rate of
90.3%. Providing a goal of (20, 20, 100) mm, the solved
joint values were [−2.36,−2.03,−0.92] mm for 𝛽 and
[−205.6◦,−108.2◦,−271.4◦] for 𝛼 with a final tip error
of 0.98 mm as seen in Fig. 4.

CONCLUSIONS AND DISCUSSION
Constraining the rotational DOF of the tubes results

in the trained policy with worse error metrics. More-
over, with the trigonometric representation, the rotational
constraints are redundant. We aim to further analysis
differences in joint sampling and testing on a hardware
system.
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INTRODUCTION
To treat and diagnose different kinds of malignancies,

minimally invasive image-guided interventions possess
major benefits over traditional surgical approaches. Real
time medical imaging such as interventional MRI or CT,
ultrasound and fluoroscopy, in combination with medical
image computing, aid in the execution of these proce-
dures. MRI is typically preferred in this application as
it offers high soft tissue contrast, multi-planar imaging
capabilities and without exposing patient or clinician to
ionizing radiation [1]. These interventional approaches are
executed percutaneously, which entails the insertion of
one or more needle-shaped probes or devices towards a
target lesion through the skin. Thus, applications such as
tumor biopsy or ablation can be performed across various
anatomical regions such as liver, kidneys and breast.
However, extensive planning and preparation are required
as direct visual and tactile information are limited, with
complications such as needle bending and tissue defor-
mations [2]. The procedures are commonly executed by
trained clinicians through iterative processes of imaging
and manual adjustment of the needle. This is proved to be
challenging as rigorous needle positioning is performed
in a confined bore of an MRI and CT scanner iteratively,
which is labor intensive and is often unergonomic for
the operating clinicians. Robotic technologies have been
investigated to achieve precise manipulation of probes
and needle, while minimizing strain on clinicians. Fluid-
actuated systems provide major benefits since pumps and
motors can be placed away from the patient, thus minimiz-
ing the system’s footprint. In the case of MRI, this eases
the efforts for MRI compatibility since non-compatible
components can be placed outside the magnetic field of
the MRI machine. In this paper, we introduce a proof-
of-concept based on the novel design of a fluid-driven
needle insertion mechanism with inflatable hyperelastic
membranes. We investigate its performance and introduce
the use of rigid sliders incorporated to the membrane to
improve consistency in the inflation, the consequent pas-
sive mechanical behaviour of the system and the maximum
needle driving force.

MATERIALS AND METHODS
The presented design builds on the system proposed

in our previous work [3]. It is composed of two actuation
stages which are circular, inflatable membrane actuators as

Fig. 1: Pneumatically-actuated needle driving system
overview - Perspective view of the prototype (a). Front
view of an inflated stage with sliders (b(i)) and without
sliders (b(ii)).Sliders attachment to the membrane (b(iii)).

shown in Fig. 1a). The stages presented in Figs. 1b(i-ii)
contain a central channel each, through which the needle
can be fed and grasped by means of inflatable hyperelastic
membranes, as shown in Fig. 1b(iii). Inflation of these
membranes provides contact with the needle, resulting in
the grasping force being transmitted onto the needle to
facilitate insertion. However, utilising membrane alone to
control a needle is inefficient as the buckling effect of the
membrane when inflated radially inwards lead to inhomo-
geneous and inconsistent contact surface. Therefore, rigid
slider elements are incorporated into the design. These
sliders are axially clamped between ball bearings within
the central housings to ensure free translation of the sliders
in the actuation stage.

The central housings are made of photopolymer resin,
printed with a 3D-printer (Formlabs©, Somerville, MA,
US). Three circumferentially-positioned bushings are
placed around each central housing to enable axial sliding
over 3mm guiding rods. The housings are attached to
a pneumatic piston to provide the axial motion of the
system. These housings also support a potentiometer for
closed loop position control of the piston. The piston is se-
cured via a chassis to a passive articulated arm (Northern
Digital Inc., Waterloo, Canada) to support and facilitate
the global positioning of the system. The stages and piston
are each actuated pneumatically via pressure regulators
(VPPX-6F-L-1-F-0L10H-S1, FESTO GmbH, Esslingen,
Germany), where the pressure is controlled through a
microcontroller (F446RE, ST Microelectronics, Plan-les-
Ouates, Switzerland) connected to a DAC (DA4C010BI,
APTINEX Ltd., Maharagama, Sri Lanka).

To evaluate the efficacy of the employed sliding ele-
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Fig. 2: Camera view of the experimental setups for com-
pliance (a) and grasping force (b).

ment, experimental setups were constructed to compare
the compliance and insertion force between the systems
with and without sliding elements. Dragon Skin™ 20
silicone rubber (Smooth-On Inc., Easton, PA, US) is used
for the inflatable membrane, which is fabricated with a
custom injection mould, resulting in a membrane with a
thickness of 1mm as shown in Fig. 1b(iii). Each slider
is equipped with a small tip fabricated from Smooth-
Sil 960™ (Smooth-On Inc., Easton, PA, US), which is
screwed through the membranes. The systems are then
actuated with the aim to grasp an 18G needle. In Fig. 2a,
the compliance characteristic is investigated by inducing
transversal force through slotted weights onto a stainless-
steel rod with a diameter of 1.5 mm to a single stage and
measuring the respective displacement of the rod at 2.5
kPa. The experiment was performed with a stainless steel
rod to eliminate possible deflection. The rod displacement
is measured through a camera (C922, Logitech, Switzer-
land) by manually tracking the end-points of the rod. This
is then repeated across all angles at 30◦ increments to
determine possible directional variability in compliance.
In Fig. 2b, the grasping force between the systems was
investigated through a similar setup by increasing slotted
weight in increments along the direction of the rod at dif-
ferent pressures. The grasping force was then determined
by the corresponding weight when the rod is displaced.

RESULTS
The displacement as a function of the applied load is

presented in Fig. 3a. For the No-sliders profile, highly
discontinuous trends are noticeable which was observed to
be caused by the rod, slipping through the gaps generated
by the buckling effect of the inflated balloon. This led to
high discrepancies for forces of 2.5 N and significantly
larger variability in the force response for the profile
without slider. Linear interpolation is performed for each
angle on each profile, to determine the lumped compliance
of the system, as shown in Fig. 3b. The variability of
compliance for the No-sliders profile occurred with a
range of 0.6 mm/N while the sliders profile has a three
times smaller range of 0.2 mm/N. Fig. 3c illustrates the
grasping forces of each profile w.r.t the given inflation
pressure up to 3.0 kPa, as pressure beyond this cause
the membrane to fail. The Sliders profile could achieve
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Fig. 3: The mean and standard deviation in shaded area
error plot for rod displacements [X] Vs. applied force [F]
(a), resulting interpolated compliance across varying angle
of force (b) and grasping force of the stage for Sliders and
Non-sliders profiles under load applied by slotted mass for
different pressures (c).

approximately three times the amount of force for the same
applied pressure in comparison to the No-sliders profile.

CONCLUSIONS AND DISCUSSION
In this work, a proof-of-concept of a fluid-actuated

system with a soft membrane for percutaneous needle
insertion is presented with the goal of high precision
control and straightforward translation to being MRI-
compatible. Rigid sliders are introduced to tackle limi-
tations associated with utilizing membranes alone. The
compliance test suggests that integration of sliders to the
membrane could provide a more consistent compliance
across all directions in the transversal plane. This passive
deformation of the system is crucial as to avoid harming
healthy tissues and the needle by conforming with the
trajectory of the needle, while yielding the appropriate
stiffness for maneuvering the needle. Furthermore, a test to
evaluate the grasping force suggests that the sliders profile
requires around three times the amount of applied pressure
to achieve the same force. The system without sliders
could not reach the required force of 2.3 N required for
percutaneous needle application during liver biopsy found
in [2]. The counterpart however could reach a maximum
force of 2.5 N at a pressure around 1.0 kPa and up to
4 N at 3.0 kPa. Further compliance and grasping force
experiments will be investigated for different types of
silicone materials to achieve the appropriate compliance
and insertion force.
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INTRODUCTION
Natural language processing (NLP) has rapidly ex-

panded over the last 20 years thanks to increasing com-
putational resourses and high investment from both many
research groups and private companies, with the aim of
automating various tasks previously performed manually
[1]. A notable rise has occurred recently also in the
medical domain, with the introduction of deep learning
technologies and pre-trained language models, such as
BERT [2]. Despite this rapid growth, only few studies
have attempted to apply deep learning NLP methods to the
surgical domain, which is a sub-category of the medical
one. The majority of the studies in surgery deals with the
extraction of outcomes from textual records and with other
text classification applications [3].

Robotic devices, also known as Surgical Robotic Sys-
tems (SRSs), are increasingly pervasive in operating the-
aters. Together with the introduction of surgical robots,
numerous books, manuals, academic papers and online-
resources about robot-assisted surgery have been pub-
lished. They are used by medical trainees to acquire or
refine their knowledge.

Extracting structured workflows from surgical textual
resources would be beneficial both for the development of
autonomous SRSs and for the intra-operative assistance
to the surgeon. However, the manual extraction of these
workflows requires substantial human effort and expertise.
NLP mining technologies for robot-assisted surgical texts
will open new frontiers of research. In particular, they
would enable:

• the extraction of high-level information from surgical
text-books (e.g. phases, steps or actions). This would
improve computer-assisted planning of surgical pro-
cedures.

• the development of cognitive SRSs, that recognize
surgical entities (e.g. anatomical parts, tools, actions)
in the texts and link them with existing a-priori
knowledge represented in ontologies. They would
allow to infer knowledge not explicitly stated in the
texts improving situation awareness algorithms and
robotic assistance;

• the use of a-priori knowledge by the SRS. This will
be an essential step toward cognitive surgical robotics
[4].

From surgical textbooks, we can extract two types of
knowledge:

• Declarative knowledge, usually formalized into on-
tologies. In surgery, declarative knowledge describes
for example the characteristics of anatomical struc-
tures (e.g., the tissue color or the organ size), the
technical specifications of the robotic tools and ex-
ceptional events that can happen both intra- or post-
operatively.

• Procedural Knowledge, possessed by an intelligent
agent that is able to perform a task. In surgery, the
intelligent agent is a surgeon or an autonomous SRS,
and procedural knowledge describes how surgical
interventions should be performed.

A limited number of studies (in non-medical domains)
have addressed the problem of Procedural Knowledge
extraction, from annotated instructional texts of recipes or
maintenance/repair manuals [5]. The number of published
works is even lower in the biomedical field, and only
one preliminary work has been published in the robotic
surgery domain [6]. This is due to the lack of annotated
publicly available data in the procedural surgical literature
that could be used to develop supervised deep-learning
methods. Furthermore, annotating datasets for NLP is
a very expensive task that requires expert personnel. A
possible solution could be to use procedural datasets
belonging to other domains. This work therefore wants
to investigate the linguistic differences between robot-
assisted surgery books and other domains, such as cooking
recipes or repair manuals. This is an essential information
for enabling the direct application of knowledge extraction
algorithms designed and developed for other domains to
surgical robotic.

I. MATERIALS AND METHODS
In this work, we propose the first linguistic comparison

between the procedural language used in robotic-surgery
textbooks and in other domains. We have compared three
representative datasets, SPKS dataset1 and the two proce-
dural datasets used by [5]. The first consists of 20 descrip-
tions of robot-assisted surgical procedures belonging to
the urological, gynecological, gastrointestinal and thoracic
domains [6]. [5] instead deals with 30 cooking recipes
from the BBC recipe website2 (referred as "BBC" later
on) and 30 "How-Tos" from eHow.com website referred
as ("E-HOW" later on).

1https://gitlab.com/altairLab/spks-dataset
2https://www.bbc.co.uk/food/recipes
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TABLE I: Values of the metrics considered in this work for the 3 analyzed datasets.

SPKS BBC E-HOW
𝛼 13.8 5.6 6.4
𝛽 3.64 2.0 2.35
𝛾 1.74 1.75 1.79
𝛿 > 30% <5% <5%

The comparison is based on the following metrics:
• (𝛼): Flesh-Kincaid’s readability score3:

𝐹𝐾𝐺𝐿 = 0.39(𝐴𝑆𝐿) + 11.8(𝐴𝑆𝑊 − 15.59)
where 𝐴𝑆𝐿 (Average Sentence Length) is the number
of words divided by the number of sentences, 𝐴𝑆𝑊
(Average Number of Syllabes per Word) is the num-
ber of syllabes divided by the number of words. The
higher the score, the harder the text.

• (𝛽) average number of verbs per sentence identified
with POS-Tagging and lemmatization techniques [7].

• (𝛾) number of average semantic roles per verb us-
ing state-of-the-art transformer-based semantic role
detection algorithms [2].

• (𝛿) Percentage of sentences using domain verbs not
found in [8]. The coverage is evaluated in terms of
presence of the lemma and of an appropriate frame
in the resource.

The first metric is designed to measure the difficulty
of an English sentence for an human reader. The second
metric instead investigates the syntactic and structural
aspect, analyzing how many tokens with the role of verb
(i.e. possible actions) are present in the sentence. It gives
clues on the procedural complexity of a sentence. The
third metric investigates how complex it could be for
an information extraction algorithm to understand and
disambiguate the sentence and link the lexical tokens
semantically. The fourth metric measures how much state-
of-the-art semantic propositional banks, built manually
using statistical analysis of general-English texts, cover the
lemmas and frames often used in procedural languages.

RESULTS AND DISCUSSIONS
Table I shows metrics described in the previous section

for the 3 datasets considered.
The SPKS dataset has a much higher FKGL score

than the other two. A value of 13.8 means difficult to
read: college graduate expertise. The other two datases
have scores below 7, which correspond to fairly easy to
read: primary school expertise. The implication is that a
domain expert (doctor or linguist) is needed to annotate
the surgical dataset for supervised algorithms. SPKS also
has a higher number of verbs per sentence (1.83 times
more than BBC and 1.54 times more than E-HOW).
This indicates that the procedural sentences written in
the surgical manuals are significantly more complex than
those of the other domains. All 3 datasets have an almost

3This formula has obvious limitations because considers only struc-
tural features: for example, the pangram "Cwm fjord-bank glyphs vext
quiz" is considered very easy to read. It is, however, representative, since
it captures useful information.

equal number of semantic roles per verb. This is expected,
since the languages are procedural and the number of
elements involved (e.g action, agent, target or tool) is
almost the same, regardless of the domain. Finally, the
surgical domain makes use of a larger number of domain
verbs (for instance kocherize, extraperitonealize, grasp)
not covered by semantic textual resources. This suggests
that current semantic banks developed for general-English
are unable to fully represent the semantic complexity
of procedural surgical language and should therefore be
extended.

CONCLUSIONS
The linguistic comparison presented in this work con-

firms that the descriptions of robotic-assisted surgical
procedures are much more demanding to interpret: (i)
they use more verbs per sentence; (ii) they require expert
personnel to annotate dataset; (iii) they make use of terms
that are not covered by existing semantic banks.

This preliminary investigation suggests that, in order to
obtain suitable performance in mining textual descriptions
for surgical robotics, modifications to existing semantic
banks and the development of specialized processing
methods are required.
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INTRODUCTION
Mapping 3D structures during endoscopy has the po-

tential to provide guidance, control, and training for sur-
gical interventions. For instance, a map of the colon can
help improve cancer screening during colonoscopy. As
endoscopic scenes lack features, depth and pose networks
can be an alternative to feature-based mapping methods.
But especially predicting relative camera poses between
two images remains challenging because regressing novel
viewpoints from training images is a complex geometric
problem. In this work, we show that image box embed-
dings provide valuable information about the camera mo-
tion during endoscopy. Our trained model can distinguish
between forward and backward movement of the camera
on synthetic data — a difficult task in real colonoscopy.
We demonstrate that the same model can precisely relocate
after occlusion and generalize to laparoscopy sequences
for some tasks without fine-tuning.

MATERIALS AND METHODS
Symmetric measures in the world, like the similarity

between two scenes, can be learned with symmetric
measures in embedding space. If image a is similar to
image b, then image b must similar to image a as well.
In embedding space, two similar images would have a
small Euclidean distance. But what if we want to learn an
asymmetric measure?

Box embeddings were initially developed for natural
language processing [1] but were recently applied to
images as well [2]. Image box embeddings allow us to
describe asymmetric measures in embedding space and
can be used to learn asymmetric relationships between
images. One such relationship is the normalized surface
overlap (NSO) between two images. The NSO ∈ [0, 1]
describes what ratio of the surface in image x is also
visible in image y and vice-versa:

NSO(x ↦→ y) = overlap(x ↦→ y)/𝑁x, and (1)
NSO(y ↦→ x) = overlap(y ↦→ x)/𝑁y, (2)

where overlap(x ↦→ y) is the number of pixels in x also
visible in y and 𝑁 is the total number of pixels.

To distinguish between the two directions, NSO(x ↦→
y) is referred to as enclosure, and NSO(y ↦→ x) is called
concentration. Depending on the enclosure and concen-
tration four different interpretable image relationships can
be observed in Figure 1. These relationships arise from
the asymmetry of the NSO and cannot be learned with
symmetric vector embeddings.

Image x

Image y

Enclosure 73 (79) 63 (58) 36 (40) 20 (35)
Concentration 72 (75) 25 (29) 9 (17) 62 (57)
Relationship clone-like zoom out oblique zoom in

Fig. 1: Ground truth (predicted) enclosure and concentra-
tion in %. The four examples show different relationships
between x and y. If the enclosure is high but the concen-
tration low, y must be a zoom out of x. If both NSOs are
low, x and y must be observed from oblique views.

𝐿1 𝐿1 < 0.1 𝐿1 < 0.05 𝐿1 < 0.01
0.0698 79% 54% 12 %

TABLE I: Surface overlap errors on colonoscopy data.

To learn NSO we train a neural network to embed
an image x as 32-dimensional box bx. The NSO can
then be approximated with the asymmetric normalized box
overlap NBO, computed as the intersection of bx and by
divided by the volume of bx or by, respectively. The box
embedding is learned using the loss

Lbox = | |NSO(x ↦→ y) − NBO(bx ↦→ by) | |22. (3)

We train the network proposed in [2] on synthetic
data generated according to the pipeline in [3]. Our data
consists of about 15k random image pairs with ground
truth overlap from four traversals through the virtual colon.
In each trajectory, each camera pose is randomly offset by
up to 2mm and rotated by up to 20°. Our test data consists
of 100 random image pairs from a different trajectory. We
also evaluate the model on sequences from the Hamlyn
laparoscopy dataset [4]. This datasets depicts real images
recorded with the da Vinci surgical system.

RESULTS
We conduct and report four experiments. First, we show

that box embeddings can learn the NSO between two
images. We train the model proposed in [2] for 20 epochs
on our training set and show example predictions for the
NSO in gray in Figure 1. For each image pair we predict
enclosure and concentration and report the average error
in Table I. On average the NBO and NSO differ by roughly

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 57



Fig. 2: For a query image (bottom left) we plot database images at the position of their predicted enclosure and
concentration. Images in the lower left corner have high enclosure and concentration and are similar to the query. As
the network was trained on Notre Dame it has no knowledge of the geometric layout of the laparoscopic scene and
misinterprets the relative position of landmarks. Yet, the model is able to cluster images that depict the same region of
the abdomen. Note how images between clusters sometimes depict landmarks from each one of the adjacent clusters.

Fig. 3: Predicted NNs (bottom) for three query images
(top). Visually the retrieved image can barely be distin-
guished from the query—the model is able to retrieve
relevant images for a camera relocation pipeline.

seven percentage points. We also report the accuracy as
percentage of images pairs with an 𝐿1 error

𝐿1 (x, y) =1
2
| |NSO(x ↦→ y) − NBO(bx ↦→ by) | |1

+ 1
2
| |NSO(y ↦→ x) − NBO(by ↦→ bx) | |1. (4)

of less than a threshold in Table I. We conclude that
the model predicts surface overlap accurately, despite the
colon’s repetitive structure.

Secondly, we show that box embeddings predict forward
and backward movements accurately. Zooming into an
image implies that the camera moved forward. Thus,
high concentration and low enclosure indicate a forward
movement—and vice versa. Of 100 test image pairs, the
model predicts the correct direction in 90% of the cases.

Thirdly, we show that box embeddings can relocate
a camera after the view was temporarily occluded, for
instance by water. NSO becomes symmetric with

NSO𝑠𝑦𝑚(x, y) = 1
2
(NSO(x ↦→ y) + NSO(y ↦→ x)). (5)

Accordingly, we can approximate NSO𝑠𝑦𝑚 as
1
2NBO(by ↦→ bx) + 1

2NBO(bx ↦→ by). For each
image in the test trajectory we retrieve the nearest
neighbor (NN) as the image with the highest symmetric
box overlap. We report the Euclidean distance between
query images and their NNs in Table II.

𝐿2 𝐿2<5cm 𝐿2<1cm 𝐿2<0.5cm 𝐿2cm< 0.1
0.43 cm 94% 78% 53% 5%

TABLE II: Median L2 distance between query images and
their predicted NNs. We also report the accuracy as the
percentage of L2 errors that are smaller than a threshold.
For reference, the total trajectory length is 105.1 cm.

Lastly, we use the pre-trained and publicly available
original model trained on Notre Dame and apply it to
the Hamlyn dataset. During laparoscopy, the abdomen is
insufflated providing a more diverse camera trajectory than
the predominantly forward-backward movement during
colonoscopy. For a query image, we plot database images
at the position of their predicted NBOs in Figure 2. We
further plot three images and their NNs in Figure 3.

CONCLUSIONS AND DISCUSSION
We demonstrate that image box embeddings can be

a useful tool to describe camera movements during en-
doscopy. The asymmetric measure can interpret relation-
ships between image pairs and relocate an endoscope
during surgery even when trained on entirely different
data. A drawback is a need for camera pose and depth
ground truth during training.
Acknowledgments: This work was supported by EU-
H2020 grant 863146: ENDOMAPPER.
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INTRODUCTION 

Spina bifida aperta (SPA) is a congenital central nervous 

system malformation caused by incomplete closure of the 

neural tube, creating a defect in the bony spine. It is one 

of the most common birth defects affecting between 0.1 

to 5 per thousand births in Europe and US [1]. The defect 

occurs during the first month of the gestational stage and 

causes progressive nerve damage to the fetus. To reduce 

risks of complications and mortality, earlier prenatal 

interventions in the uterus are highly recommended [2]. 

Conventional minimal invasive surgery where multiple 

incisions are required to access the uterus would weaken 

the membrane’s strength and increase the risk of rupture. 

Membrane rupture at early gestational stage leads to 

extreme premature delivery with possible fatal 

consequences [2]. Single port access surgery (SPA) is 

currently explored as an alternative for prenatal spina 

bifida repair. To support SPA-SBA repair, a Macro-

Micro Multi-Arm robot is under development at KU 

Leuven (Fig. 1). 

The robot has multiple instrument arms capable of 

conducting various surgical tasks. Each arm has 3 degree 

of freedoms (DoFs). Two “Macro” DoFs are realized by 

a pair of concentric tube forming a so-called 

“triangulation stage”. By sliding the pair of tubes relative 

to each other, the overall shape is altered from a straight 

line (required for entry via the incision) to a first 

outwards and then inwards bending triangulation shape. 

It is to be noted that the relative orientation of the pair of 

tubes does not change such that the triangulation takes 

place in a single plane. The pair of tubes can be jointly 

rotated about their shared proximal axis. This allows to 

rotate the entire triangulation plane and offers a 3rd Macro 

DoF per instrument arm (tube pair). A fourth “Micro” 

DoF is provided by a distal bendable section driven by a 

pneumatic artificial muscle.  

Because of the constraints for miniaturization and 

sterilization, integrating sensors inside this system is not 

trivial. Hence, miniature optical sensors (PAT9125EL, 

PixArt Imaging Inc., China) were installed in the drive 

system to measure the two proximal displacement DoFs 

of the concentric tube. This abstract introduces a model 

to estimate the distal tip’s pose as function of the macro 

DoFs and more in particular the insertion length 𝑠𝑖 of the 

tubes and provides an assessment of the model accuracy. 

MATERIALS AND METHODS 

The model receives the rotation angle 𝛼  and insertion 

distances 𝑠1, 𝑠2 as input and computes the position and 

shape of the concentric tube structure in 3D workspace. 

Apart from a pre-bent section at the distal tip, both tubes 

have straight sections which are connected to linear 

actuators. At this location, it is possible to integrate 

miniature optical sensors. The optical sensors measure 

motion in two perpendicular directions in a plane parallel 

to the optical sensor’s surface (Fig. 2a). After calibration 

the sensors were found able to measure incremental 

rotation and translation of the tubes (Fig. 2b) with 

respectively a resolution of 0.15 degrees and 22 

micrometer per count. Due to the relative motion 

between the inner and outer tubes, separate trackers are 

necessary per tube.  

The pre-bent sections of the tubes have different 

curvatures 𝜅𝑖 and curve lengths 𝑙𝑖 at the distal section as:  

𝜅1 = {

1

55
 𝑚𝑚−1  ∈ 𝑙1 = [0, 64.5𝑚𝑚]

0 𝑚𝑚−1 ∈  𝑙1 = [64.5, 70𝑚𝑚]
   

𝜅2 = {

1

57
 𝑚𝑚−1  ∈ 𝑙2 = [0, 53𝑚𝑚]  

0 𝑚𝑚−1 ∈ 𝑙2 = [53, 120𝑚𝑚]
   

 

When the inner tube slides inside the outer tube both bent 

and straight sections will overlap and interact. The 

combined curvature 𝐾𝑐𝑜𝑚,𝑗 of the overlapping concentric 

Fig.1 Macro-Micro Multi-Arm robot for spina bifida repair with 

single port access intervention. 

 

Fig. 2 (a) Data acquisition illustration (b) Optical tracker installation 

 

(1) 

(2) 
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section 𝑗 follows the curvatures of both tubes as in 
 

𝐾𝑐𝑜𝑚,𝑗 =
∑ 𝐸𝑖  𝐼𝑖  𝜅𝑖

𝑛
𝑖=1

∑ 𝐸𝑖  𝐼𝑖  
𝑛
𝑖=1

 

 

where 𝐸𝑖 is the Young’s modules of the Nitinol alloy and 

𝐼𝑖  is the moment of inertia of the tubes. A key assumption 

applied here is that the original pre-bent curvatures 𝜅𝑖 of 

both tubes do not alter over time. During the deployment 

of the instrument arm, the sliding motion of the two tubes 

changes the combined curvatures 𝐾𝑐𝑜𝑚,𝑗  along the arm. 

The instrument tube has three different configurations in 

the final shape (Fig. 3a). With the curvature 𝐾𝑐𝑜𝑚,𝑗  and 

curve length 𝑙𝑠,𝑗of one section derived from the insertion 

distances 𝑠1, 𝑠2, the transformation matrices 𝑇𝑗
𝑗−1

 
 

𝑇𝑗
𝑗−1

=

[
 
 
 
 
 cos(𝐾𝑐𝑜𝑚,𝑗𝑙𝑠,𝑗) − sin(𝐾𝑐𝑜𝑚,𝑗𝑙𝑠,𝑗) 0

sin(𝐾𝑐𝑜𝑚,𝑗𝑙𝑠,𝑗)

𝐾𝑐𝑜𝑚,𝑗

sin(𝐾𝑐𝑜𝑚,𝑗𝑙𝑠,𝑗) cos(𝐾𝑐𝑜𝑚,𝑗𝑙𝑠,𝑗) 0
1−cos(𝐾𝑐𝑜𝑚,𝑗𝑙𝑠,𝑗)

𝐾𝑐𝑜𝑚,𝑗

0 0 1 0
0 0 0 1 ]

 
 
 
 
 

      

 

and the 2D shape could be determined following [3].  

Because the pre-bent orientations of two tubes share one 

common plane, the model can be multiplied with another 

transformation matrix 𝑅(𝛼)  to produce additional 

rotation needed for 3D experiments. In the experiments 

the model was compared to a ground truth measurement 

of the tip. Hereto the tip position was measured by 

integrating two electromagnetic sensors (Aurora Micro 

6DoF, NDI, Canada) at the tip and the base of the 

instrument arm.  

It was found that the overall accuracy is mainly 

determined by the quality of the 2D shape estimation. 

Since the input measurement could be decoupled from 

the optical trackers, the model was first validated with the 

tip position in 2D. Twenty insertion distances with equal 

increments were chosen to cover all three concentric tube 

configurations. For each set, 5 iterations were conducted 

to get averages and standard deviations of the estimates.   

RESULTS 

The average position errors at insertion X and bending Y 

directions were shown in absolute and relative values 

with respect to the total insertion distances (Fig. 3b). The 

total insertion distances were divided into groups of three 

configurations described in Fig. 3a.   

The errors increased with the deployment of the 

instrument arm. At two transition stages between three 

configurations, the error changed drastically and then 

remained within the same range until the next transition. 

The maximum absolute error in tip position occurred 

when the tubes were fully inserted by actuators. The 

absolute error in the insertion direction X reached 6.32 

mm and the one in the bending direction Y reached 3.09 

mm at the final stage. The level of accuracy was not 

sufficient for the intended medical application where the 

required error should be less than 1 mm. Modifications 

are required for the model to reduce the error in 2D 

reconstruction before 3D validations.  

Because the ranges of motion in two directions were 

different, error analysis in percentage were necessary for 

determining the main source of error. The results 

indicated that the maximum error in percentage in 

direction Y was 18.3% and the one in X was 8.5%. 

CONCLUSION AND DISCUSSION 

This abstract introduced a forward kinematic model 

together with optical sensor to estimate the distal motion 

of an SPA instrument for SBA treatment. Estimation 

errors were up to 6.32 mm indicating that the model can 

be used for gross positioning. The error accumulation 

was mainly because the default curvature of the two tubes 

changed during their interactions. Hence, adjusting the 

constant curvature assumption in the model and 

quantifying the changing curvatures could help improve 

the model’s accuracy.   
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INTRODUCTION 

Improvements in surgical technique and pharmacological 

anti-rejection medications have made organ 

transplantation not only a viable treatment option for 

many but a preferred one in recent times [1].  While 

demand for organ transplants has increased in recent 

decades, the availability of viable organs has not kept 

pace. One solution that is currently being evaluated is 

machine perfusion (MP). MP has promising research-

based applications. Previous studies have demonstrated 

the increased clinical relevancy of perfused ex vivo organ 

models over their nonperfused counterparts [2]. Clinical 

MP systems are specialised for organ transplantation, 

with tightly controlled operation parameters and a high 

degree of sterility. This reduces the overall versatility of 

the systems, rendering them unsuitable for use as 

research platforms. We present an MP system 

specifically designed as a platform for a wide range of 

research applications. This system provides an affordable 

alternative to commercially available clinical MP 

systems, with a total parts cost of approximately £11,000. 

Alongside its cost-effectiveness, this MP system is 

designed to be versatile and dynamic, allowing real-time 

monitoring of parameters of most interest and 

applicability to the specific needs of the user. Here, we 

present preliminary findings wherein the system is used 

to record spectroscopic data in a perfused porcine liver 

which is correlated to real-time blood oxygen saturations 

of the perfusate.  

MATERIALS AND METHODS 

Livers were obtained from domestic pigs immediately 

after termination at an abattoir and prepared for transport 

in situ. Whole red blood cells from autologous porcine 

donation were collected to be used as a perfusate. The 

portal vein (PV) and hepatic artery (HA), designated for 

inflow, and the hepatic vein (HV), designated for 

outflow, were cannulated using 6.35mm tubing. The bile 

duct was ligated to prevent bile leakage and blood 

flushed from the organ using cooled heparinised saline 

solution. The liver was weighed prior to connection to the 

system. The oxygenator heated the perfusate to 29°C and, 

during the oxygenated phase of data collection, pure 

oxygen was supplied at 0.2bar.  

System monitoring and control was coordinated by a 

raspberry pi microcontroller and used a MODBUS and 

RS232 serial communication protocol to communicate 

with the sensors. The raspberry pi recorded and displayed 

the raw data from all sensing equipment continuously in 

real-time and recorded it for further analysis. A 

predetermined inflow pressure was maintained by a 

control algorithm which altered pump speed based on 

inflow pressure readings via a closed-loop PID 

controller. Additionally, the system has the capability of 

maintaining an input flow rate through the use of a 

cascade controller. The weight of the organ was 

monitored using four load cells located at the base of the 

organ chamber. Pressure (PendoTech, Press-n-075), flow 

Figure 1: An overview of a research-orientated perfusion 

system. 
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(Sonotec Sonoflow, co.55/100), temperature (PreSens, 

Pt100), and blood oxygen (PreSens, EOM-(t)-FOM) 

sensors were connected in series in the inflow circuit 

branch. The outflow branch was monitored by additional 

pressure and flow sensors, as shown in Figure 1. Blood 

from the outflow branch and runoff collected in the organ 

chamber was returned to the reservoir, where it was 

filtered. The oxygenator re-oxygenated blood and 

warmed it via a heat exchanger and was controlled via a 

peristaltic pump (Watson-Marlow, 520Du). 

Diffuse optical spectroscopy was carried out by securing 

a fibre optic reflection probe, supplied by a tungsten-

halogen light source, against the surface of the liver. 

Reflected light was collected by a charge coupled device 

spectrometer. Calibration measurements with the light 

source on and off were taken with the probe against a 

white calibration card, and against the liver. The system 

was run and the liver perfused for one hour, during 

which, measurements were taken at regular intervals 

prior to and during perfusion with blood. Following 

perfusion with deoxygenated blood, the blood was 

gradually oxygenated. Once processed, the spectroscopy 

measurements were synchronised with and compared to 

measurements recorded by the MP system perfusate 

oxygen sensor. 

RESULTS 

Results from the spectroscopy data were post-processed 

in MATLAB; results are shown in Figure 2. A model of 

blood attenuation was fitted to the acquired absorption 

spectra to determine a value for tissue oxygen saturation; 

however, it did not account for the peak at 660 nm, which 

may result from the heparin present in the blood. The 760 

nm peak height was analysed as a marker of 

deoxygenated blood, as this peak only exists in the 

spectrum of deoxyhaemoglobin (Hb). The 690 nm 

spectral region was selected as the region of greatest 

difference between Hb and oxyhaemoglobin (HbO2) 

spectral intensity. The 815 nm spectral region was 

selected as it is the isobestic point of the spectrums of Hb 

and HbO2. Figure 2 shows a clear change in tissue 

absorption over the duration of the perfusion. While there 

is a delay between measured blood oxygen saturation and 

the corresponding change in absorption spectra peaks, 

there is an increase in the 760 nm peak, as the organ is 

perfused with blood, and a decline in the peak, as the ratio 

of deoxygenated to oxygenated blood decreases, as 

expected. 

CONCLUSION AND DISCUSSION 

Machine perfusion is proving to be invaluable in clinical 

practice [3][4], and we propose that a modified computer 

assisted MP system can also benefit the research 

community. By providing an alternative research 

platform, such a system can assist researchers in 

monitoring key parameters relevant to their discipline 

and area of interest. Integration of several sensing 

components makes such a system modular and adaptable. 

Our results demonstrate that whole ex-vivo organ 

perfusion with a computer assisted system is both 

feasible and a promising avenue for the development of 

an innovative research platform. Multiple physiological 

parameters can be integrated within the perfusion circuit 

and within this study we have successfully validated 

oxygen saturation.  Our perfusion circuit allows for a 

greater range of monitoring with the addition of various 

parameters, as per the requirements of individual 

experiments. More work is underway to demonstrate the 

versatility of such a cost-effective research platform. 
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Figure 2: Top: Average tissue absorption spectra in 10 minute 

intervals. Middle: Change in height of 760 nm peak in the 

absorption spectra, compared to blood oxygen concentration. 

Bottom: Ratio of change in intensity of 690 nm and 815 nm 

spectral regions, compared to blood oxygen concentration. 
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INTRODUCTION

Robot-Assisted Surgery (RAS) technology has been
widely adopted for its improved surgical precision and
outcomes [1]. RAS systems generate a wide variety of
synchronized data, which can drive artificial intelligence
(AI) applications [2]–[4] such as the presentation of ad-
visory information [5] and surgery workflow analysis [6],
etc. These applications share the constitutive prerequisite
of the real-time awareness about the current stage of a
surgery [7]. A surgical Hierarchical Finite State Machine
(HFSM) models the temporal evolution of an RAS proce-
dure at multiple levels of temporal granularity, including
the current surgical task (superstates) and the fine-grained
states that model a surgeon’s actions and operation envi-
ronments. At each instant, the current surgical superstate
and fine-grained state are often highly correlated. E.g.,
during tissue dissection, tissue cutting is a commonly
observed fine-grained state. However, it is not observed
during suturing. The fine-grained state of needle manip-
ulation is frequently observed during suturing, but not
during tissue dissection. Such hierarchical correlations are
commonly present in a surgical HFSM, and can improve
the accuracy of surgical (super)state estimation. Previous
methods have separately explored surgical superstate or
fine-grained state estimations [8]–[13] with Convolutional
Neural Networks (CNNs), Long-Short Term Memory
(LSTM), etc.; however, these methods relied only on
direct data sources such as the surgical robot’s kinematics
[8], [14], endoscopic video streams [2], [9], and the
surgical system’s events [4], [7]. The surgical (super)state
time series are inferred data sources that have yet to be
incorporated into the estimation process at other levels
of temporal granularity. Since hierarchical correlations
between surgical states are common and informative, the
knowledge of the current surgical superstate can aid the
fine-grained surgical state estimation, and vise versa.

We propose Concurrent Hierarchical Autonomous Sur-
gical State Estimation Network (CHASSEN): a learning-
based hierarchical surgical state estimation model that
estimates surgical superstate and fine-grained states during
RAS. CHASSEN achieves accurate and efficient surgical
(super)state estimation through the learning and use of
hierarchical correlations between states at multiple levels
of temporal granularity. Our contributions include:

• Using both direct (robot kinematics, endoscopic vi-
sion, system events) and inferred data (current sur-

gical (super)state) as input sources for concurrent
hierarchical surgical (super)state estimation;

• Learning the hierarchical correlations between sur-
gical states at two levels of temporal granularity
through an alternating training schematics;

• Improving surgical (super)state estimation accuracy
by 4.3% and processing time by 31% comparing to
existing methods in a real-world RAS dataset.

Comparing to state-of-the-art hierarchical surgical state
estimation methods [7], CHASSEN’s learning and utiliza-
tion of hierarchical correlations between surgical states
at multiple levels of temporal granularity allowed it to
achieve a higher state estimation accuracy with a more
lightweight network architecture and higher estimation
speed, which shows a strong promise for more effective
and efficient hierarchical surgical state estimation ability.

MATERIALS AND METHODS
We used HERNIA-20 - a real-world RAS dataset con-

taining 20 robotic inguinal hernia repair surgeries [4] - to
train and evaluate CHASSEN. HERNIA-20 is annotated
with 8 surgical superstates and 21 fine-grained surgical
states. Hierarchical correlations exist commonly among
the (super)states, including the likelihood distributions of
state occurrence, the surgery’s temporal progresses, etc.

CHASSEN includes feature extraction and surgical (su-
per)state estimation modules and accepts both direct RAS
data and inferred data sources as inputs. The surgical state-
related features are extracted from direct RAS data sources
via a neural network-based feature extraction module (Fig.
1). Hierarchical correlations between surgical superstates
and fine-grained states are captured through CHASSEN’s
training schematics (Fig. 2). Following [4], CHASSEN
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Fig. 1: CHASSEN’s feature extraction module.
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Fig. 2: CHASSEN’s model architecture and its alternating training schematics.
uses synchronized time series data streams to leverage
a rich representation of the surgical scene. To eliminate
variability in the anatomical background, a semantic mask
of the endoscopic vision image containing three scene
classes (instruments, tissue, others) is first generated by
a U-Net [15] based surgical scene segmentation model
that was extensively trained and frozen. LSTM encoders
embed the surgery’s temporal progress into direct data
features ℎℎℎ = [ℎℎℎvis, ℎℎℎkin, ℎℎℎevt]. An attention mechanism [16]
manages the diversity of the robot kinematics and system
events data sources. The feature extraction module will be
further discussed in the final submission.

Knowledge of the current surgical superstate substan-
tially improves the estimation of the current fine-grained
surgical state, as the likelihood of occurrence and prob-
ability distribution of the fine-grained surgical states is
correlated with the superstate. Similarly, knowledge of the
current fine-grained state improves the superstate estima-
tion process. We therefore adapt an alternating training
schedule that learns such hierarchical correlations (Fig.
2). CHASSEN initially trains the superstate estimator only
with direct input data. The embedded latent representation
of direct input data forms a feature tensor over an obser-
vation window, and an LSTM decoder with an addition
attention mechanism [16] was used for surgical superstate
estimation [7]. The trained superstate estimator then gen-
erates the inferred data source - the surgical superstate
time series. An LSTM encoder extracts the temporal cor-
relations between superstates and their corresponding fine-
grained surgical states, which is incorporated for the initial
training of the fine-grained state estimator. CHASSEN
implements StiseNet [4] - a robust model for fine-grained
surgical state estimation. We then adopt an alternating
training schedule between the fine-grained surgical state
estimator and the surgical superstate estimator: in each
training iteration, a previously trained and frozen estimator
is used to generate either the surgical superstate or fine-
grained state estimation result, which is concatenated with
direct features to fine-tune the parameters of the other
state estimator. The iteration repeats until convergence
of the surgical (super)state estimation performance. Fur-
ther details and hyperparameters of CHASSEN’s training
schematics will be discussed in the final submission.

CONCLUSIONS AND DISCUSSION

CHASSEN’s hierarchical surgical (super)state estima-
tion performance is compared against our previous work
HESS-DNN [7]. HESS-DNN produces superstate and fine-
grained state estimations through separate models in a de-
coupled manner, in which little knowledge of the surgical
states at two levels of temporal granularity was shared
during training or inference. We show the performance
improvement of CHASSEN through two metrics: the
percentage of time steps in the test set with correctly es-
timated surgical (super)states and the model’s processing
time on a workstation with an Intel Core i7-6700 CPU,
24GB RAM, and an NVIDIA RTX 2060 graphics card.
To accommodate real-time applications, CHASSEN only
uses data from the preceding and current time steps.

CHASSEN achieves a surgical superstate estimation
accuracy of 88.4%, a 4.3% improvement over HESS-
DNN, which estimates superstates without any knowledge
about the related fine-grained states. CHASSEN also
improves the fine-grained state estimation performance to
77.3% comparing to HESS-DNN’s 75.7%. CHASSEN’s
improvements in both superstate and fine-grained state
estimation accuracy highlight the importance of corre-
lations between hierarchical surgical states. Additionally,
CHASSEN’s lighter network architecture (as compared
to HESS-DNN) significantly improves its state estimation
processing time. Since HESS-DNN performs hierarchical
state estimation in a decoupled manner, it uses multiple
deep neural network architectures trained independently
[7]. Comparing to HESS-DNN’s 7.1 frames per second
(fps) operation, CHASSEN estimates both surgical super-
state and fine-grained states at 9.3fps - a 31% gain.

In our initial study, CHASSEN performs more accurate
hierarchical surgical state estimation with greater effi-
ciency due to its incorporation of hierarchical correlations
between surgical (super)states. Ongoing work evaluates
CHASSEN more extensively and systematically to fully
explore efficient hierarchical surgical state estimation. Our
final submission will better describe CHASSEN’s network
architecture and training methods. A quantitative analysis
of the contributions of correlations across hierarchical
states is among our future work.
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INTRODUCTION
In endovascular interventions, vessels serve as access routes

to deep and remote anatomic regions [1]. Navigation through
narrow, fragile, and deformable vessels in endovascular pro-
cedures requires considerable skill [2]. Robotic distributed
control approaches could improve catheter navigation to by-
pass anomalies and prevent tissue damage [3]. For particularly
narrow vessels, remote actuation through magnetic fields could
help in performing complex coordinated motion in three-
dimensional (3D) space as magnetic fields are safe and highly
controllable [4]. Visualization during endovascular catheteri-
zation procedures mainly relies on fluoroscopy, an X-ray based
imaging modality that only offers two-dimensional (2D) views
of the interventional scene [5]. Conventional approaches are
thus characterized by poor situational awareness as construct-
ing a 3D representation from 2D views is mentally demanding.
Generating a 3D view via a C-arm is time-consuming and
can only be done sporadically to limit patient radiation. Intra-
operative 3D vessel representations from non-ionising imaging
sources could greatly improve ease of navigation of the med-
ical instruments to target anatomic sites. Another challenge is
to provide safe guidance when navigating in fragile vessels
from a restricted access point [6]. This could be addressed by
path planning to search for a feasible path connecting a start
to a goal configuration, while considering the robotic systems
constraints and characteristics.

Fig. 1: Overall schematic of proposed medical robotic platform.

In this work, a prototype of a medical robotic platform
aimed at endovascular catheterization is developed (Fig. 1).
The system integrates several components: a multi-lumen
catheter shaft, termed 3Flex, magnetically actuated micro-
catheter and a navigation control module conceived to help
teleoperation and/or autonomous navigation of the 3Flex. This
module comprises 3D vessel modelling, automatic registration,
path planning, and catheter control. The 3Flex catheter is

∗These authors contributed equally to this work.
This work was supported by the ATLAS project. This project has received
funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 813782.

designed to carry within it two 6 degrees-of-freedom (DOFs)
electromagnetic (EM) tracking sensors, one intravascular ultra-
sound (IVUS) catheter, and two magnetically-actuated micro-
catheters envisioned to be controlled by a permanent magnet
carrying KUKA robotic arm. However for this prototype, only
one microcatheter was used.

MATERIALS AND METHODS
The 3Flex (Fig. 2) is a 3D printed catheter with an outer

diameter of 12mm, a length of 500mm, and a 75mm long
2 DOF steerable tip actuated by four integrated pneumatic
artificial muscles (PAMs). Its EM tracking sensors are located
in two 10mm long sections proximally and distally adjacent to
the steerable tip; both are fixed in place in their own lumens
and provide position data to the control module. While the
design can accommodate a coaxial Fibre Bragg Grating (FBG)
for shape reconstruction of the distal segment, it was not
implemented here.

Fig. 2: A) 500mm long 3Flex system (beside a 300mm long ruler);
B) view on tip of 75mm active distal section C) cross-sectional view
showing embedded functionalities in the 3Flex’s lumina.

Autonomous trajectory planning is designed into the inte-
grated system. Given the preferable anchor region, targets (i.e.
two coronary ostia), and start region (patient groin), an optimal
path and anchor pose were generated and forwarded to the
user. During the trajectory planning, following constraints and
system characteristics were incorporated: tip length, bending
capability, 3Flex’s outer diameter, magnetic microcatheter
length and offset between magnetic microcatheter and 3Flex
catheter’s main axis. Real-time IVUS and EM tracking-based
vessel modelling technology is integrated in this system. With
it, a local representation of the vasculature of the vessel
as a 10mm long cylinder-shape at the level of the catheter
tip is estimated in real time. This 3D vessel modelling ap-
proach provides a 3D representation of the local vasculature
for visualization and assists catheter navigation. Navigation
assistance is achieved by outputting the 3D vessel model
as well as its positioning relative to the 3Flex tip to the
control strategy. Furthermore, an online automatic registration
approach is implemented based on the intra-operative IVUS
and EM tracking data. This registration method requires
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minimal user interaction by exploiting either a stochastic
branch and bound method or an iterative closest point algo-
rithm. It produces a transformation matrix between the EM
tracker’s coordinate frame and a pre-operative mesh frame
[7]. This automatic registration runs continuously. Additional
information regarding the vessels contour (points) are used to
refine the registration between the pre-operative and the intra-
operative (reconstructed) geometries. From the above IVUS-
based strategies, enhanced catheter navigation is attained as
the pre-operative geometry can be overlaid with the estimated
local vessel models and the catheter pose. Consequently,
the catheter pose and shape awareness can be significantly
improved. To communicate this information the estimated
local cylinder models and the reconstructed vessel registered
with the pre-operative mesh was rendered both in a graphical
user interface (GUI) based on the Unity engine (Fig. 3,
left) and visualized in augmented reality using Microsoft’sr
HoloLensTM 2 (Fig. 3, right).

Fig. 3: Overview of GUI of intra-operative 3D vessel modelling,
presenting (A) screen GUI including Unity rendering (PC1) and
OpenGL rendering (PC2); (B) augmented reality GUI via HoloLens
2. The transformation matrix computed by the automatic registration
strategy is also displayed in the middle.

The 3Flex has three DOFs of which two are catheter bend-
ing, while one is catheter insertion/retraction. Four PAMs are
configured in two antagonistic pairs, allowing bi-directional
bending of the 3Flex tip with a 80◦ maximum bending angle.
To control the bending angle, input pressures to the four PAMs
are modulated by four proportional air pressure valves (Festo
group, Germany). Thes valves receive control signals from an
analog output module NI-9144 (NI, Texas, USA). Currently
tele-operated, 3Flex bending will be semi-autonomous in the
future. A sleeve-based catheter driver, which has two pneu-
matically actuated grippers that grasp the catheter alternately
and insert the catheter in a relay fashion, (Fig. 1, top right) is
used to advance/retract the 3Flex.

The magnetic microcatheter carried by the 3Flex is com-
posed of a soft polymer (UV Electro 225-1, Momentive,
Germany) with embedded magnetic particles (MQFP-15-7,
Magnequench, Germany). Once protruding from the 3Flex, it
can be remotely actuated by a permanent magnet that is either
robot-mounted or hand-held. The hollow microcatheter can
introduce other sensors or guidewires for easier cannulation
or for returning to earlier reached locations.

RESULTS
Trajectory planning was employed for the integrated system

and the visualization of the inputs and outputs of the path
planner is presented in Fig. 4. Fig. 3 depicts the output of
the 3D vessel modelling approach and the online automatic
registration strategy. The former determines, at each time
step, an estimated local cylinder in the vicinity of the 3Flex
tip. The latter helps to compute the transformation matrix
of the intra-operative IVUS data with respect to the pre-
operative geometry and overlay the estimated cylinder for
catheter navigation. Both methods rely on the EM tracking data

relative to the 3Flex tip pose and the vessel lumen contours,
segmented from IVUS images.

Fig. 4: Visualization of the inputs and outputs of the path planner.
To qualitatively evaluate the system, the 3Flex catheter was

steered in an aortic phantom by using a joystick. The planned
path was displayed to the user controlling the joystick. The
catheter was successfully steered from the descending aorta
to the coronary ostia (Fig. 5), by utilizing deflection from
contact points. The optimal deflection points were determined
by the navigation control module by considering the maximum
bending angle/radius of the 3Flex. The magnetic microcatheter
was guided to the right coronary artery (RCA) based on exter-
nal visual feedback (Fig. 5) for now. However, in the future,
integration of FBG- and EM- based shape reconstruction will
replace the need for visual feedback.

Fig. 5: 3Flex system being steered in the aorta and delivering the
microcatheter to the aortic root from where the external magnet
guides the magnetic microcatheter to the right coronary artery.

DISCUSSION AND CONCLUSION
The 3Flex was successfully tele-operated to the target site

by joystick, further showing good stability during the manip-
ulation of the magnetic microcatheter. Planned future work
consists of integrating an autonomous control strategy of the
3Flex catheter to follow the pre-planned trajectories, while
considering the intra-operative vessel model in the decision-
making. Though only one microcatheter was used for this
demonstration, the 3Flex has been designed to carry two within
it which can be pushed one after the other and guided to
both coronary arteries. Finally, while the proposed prototype
is focused on endovascular catheterization, the developed
technologies can be transferable to other intraluminal clinical
scenarios, e.g. colonoscopy or ureterescopy.
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INTRODUCTION
Minimally invasive gastrointestinal procedures such as

Endoscopic Submucosal Dissection (ESD) are challenging
to perform with standard flexible endoscopes [1]. Hence,
robotic solutions have been proposed to improve dexterity
and manipulation in intraluminal surgeries. Conventional
systems such as Da Vinci (Intuitive Surgical) have been
used for transanal access, but the usage of rigid instru-
ments limits the application to operating in the vicinity of
the natural access and makes manipulation in constrained
areas highly challenging. Recently, STRAS robotic plat-
form [1] has shown feasibility for intraluminal procedures
in terms of safety and dissection speed with respect to
manual systems.

Optical Coherence Tomography (OCT) embedded in
continuum robots offers minimally invasive scanning of
internal tissues and organs with micrometre resolution and
millimetre penetration depth. However, due to the limited
depth perception, to achieve precise scanning, contact
between the tissue should be maintained during scanning.
Performing such tasks requires controlling several DoFs
while relying on both the endoscopic camera and OCT
images. This procedure has been proven to be difficult to
realise by users, even in telemanipulation. In this context,
automatic repositioning of the endoscope could allow
deploying the OCT probe accurately and more easily.

The objective of this study is to develop autonomous
endoscope positioning to facilitate OCT sensing in a
phantom environment (Fig.1a).

MATERIALS AND METHODS
Autonomous positioning of the endoscope is carried out

by developing an image-based controller. We describe the
methodology and the OCT sensor data in this section.
System Overview: The STRAS robotic system consists

of a main endoscope, which allows to house three work-
ing channels for instruments [1]. The main endoscope
is equipped with a camera at the distal tip, a lighting
system and, a channel for fluids such as air insufflation
and water to cleanse the camera. The distal part of the
endoscope can be deflected in two orthogonal directions,
which are actuated by antagonist tendons. In total, the

∗These authors contributed equally to this work.
This work was supported by the ATLAS project. This project has
received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant
agreement No 813782.

(a) (b)
Fig. 1. (a) STRAS robotic setup. (b) Motorised OCT probe.

system has 10 degrees of freedom, 3 per arm (bending,
rotation and translation) and 4 on the body (vertical
and horizontal bending, rotation and translation). In our
setup, a motorised OCT probe is inserted in the central
instrument channel and extends 25mm out its distal tip
(Fig.1b).
OCT: The probe comprises an external motor, an optical

fibre, a distal ball lens, a casing and the associated
electronic and optical elements. The ball lens deflects
the light passing through the optical fibre, creating an
orthogonal imaging beam to the probe. The reflected light
is processed to obtain A-line scans with a perception
range of 3.5mm outside the probe sheath. The high-speed
rotation of the external motor enables the creation of radial
images at 50Hz. In this study, we use planar radial B-scans
images. The OCT image stream is firstly stabilised with a
CNN-based method [2] and then segmented to calculate
the distance and direction between the scanning centre and
the surrounding tissue.
Polyp Detection: Polyps in the phantom are automati-

cally detected using supervised deep learning techniques.
The training set is created by capturing images through
telemanipulating the robot. These images (720 × 576
pixels) are manually annotated by selecting the polyp
area from the background; the 100 images collected are
augmented to ensure robust training. A U-net [3] is
implemented and trained in a supervised manner on the
annotated image dataset. Using the output of the trained
U-net, the centre of mass of the detected polyp (𝑃𝑝) is
estimated.
Endoscope Orientation: An image-guided position con-

trol is developed to reduce the distance error between
the image centre 𝑃𝑐 and the detected coordinates of
polyp 𝑃𝑝 . The controller outputs the desired joint position
proportional to the error, 𝐸 = 𝑃𝑐−𝑃𝑝 , on both coordinates
𝐸 = [𝐸𝑥 , 𝐸𝑦]. With the horizontal bending 𝑞ℎ𝑜𝑟𝑧 reducing
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Fig. 2. a) Image guided control. Sequence of frames obtained from the monocular camera while aligning towards the polyp (i) in
normal lighting conditions, (ii) in varying lighting conditions, (iii) Experiment two: translating and aligning towards the detected
polyp. b) Top: Deployment of the OCT probe. Bottom: Data generated while tissue scanning. c) Plot of evolution of 𝐸𝑥 , 𝐸𝑦 and
𝑑𝑂𝐶𝑇 for the second experiment performed.

the 𝐸𝑥 component and, 𝑞𝑣𝑒𝑟𝑡 acting on 𝐸𝑦 . When the error
is below \1 = 60 pixels and \2 = 100 pixels, for 𝐸𝑥 , 𝐸𝑦 ,
the orientation control ends.
Endoscope translation: To ensure polyp-probe contact,

a small motorised translation of ∼ 5𝑐𝑚 is carried out
at a constant speed. For simplification, the navigation is
carried out at a constant speed. The OCT signal is used as
feedback to terminate the translation when the tip is close
to the polyp or colon wall, i.e. 𝑑𝑂𝐶𝑇 < \3, where 𝑑𝑂𝐶𝑇

represents the distance measured by the OCT probe and
\3 = 750`𝑚 is the distance threshold.

For the experiments performed, the STRAS robot was
teleoperated by the user inside the colon model; the
position allows polyp visibility. Then, after a set time, the
autonomous technique takes control of the whole-DOF to
perform the alignment.

RESULTS
We use the ascending colon part of the LM-107

Colonoscopy Simulator (KOKEN, Japan). The model has
a white polyp that can be inserted in a predefined location
within the selected section. Our aim is first to show robust
polyp detection in varying lighting conditions; second to
deploy an OCT probe for tissue scanning. For the first
objective, we implement the image position control as
described in the previous section, and evaluate detection in
changing luminosity conditions. Note that the OCT probe
is not employed in these experiments. For the second
objective, we deploy the OCT probe and translate near the
polyp to scan the tissue. We consider two experimental
scenarios as follows (i) align first and then translate
towards the polyp; (ii) align towards the detected polyp
while translating.

The image position control and translation experiments
are illustrated in Fig.2a. The distance from the centre of
the image (red dot) to the centre of mass of the detected
polyp (green dot) is shown in blue. Fig.2b (bottom)
shows the detection of the polyp surface in the OCT
image when the endoscope is approaching it, with the
corresponding endoscopic image in the top line. The green
line in this figure shows the polyp surface, while the blue
shows the sheath of the OCT catheter probe. It can be
observed that when the endoscope is not aligned with the
polyp, both the line remains straight as the polyp remains
outside the field of view of the OCT probe. However,
while approaching towards polyp, a peak point occurs in
the green line showing the presence of an object near

the probe. The peak point continues growing more with
endoscope advancement and finally touches the blue line
when the probe is about to collide with the polyp. This
way, the feedback from the OCT image avoids collision.
In Fig. 2c, the results of the second experiment are shown.
A 10 second (830 step) safety buffer is set for visual
inspection at a 50Hz step rate. After this, pixel error 𝐸
starts reducing; the 𝑑𝑂𝐶𝑇 start decreasing after the 1300
step, in which the probe has come close enough to the
polyp to provide a measurement with less error.

CONCLUSIONS AND DISCUSSION
The LM-107 colon model used has a 4cm diameter,

making navigation with the arms outside the channels
prone to collision. A model with a realistic colon diameter,
from ∼4-8 cm, would resolve the collision problems and
allow for independent arm-body motions [4]. Increasing
the complexity of the testbed would require a more robust
control system, e.g., the one present in [5] where feedback
from the endoscopic camera and OCT is used to actuate
the translation and bending intelligently. The prior changes
on the setup would require retraining the neural network to
ensure polyp detection in real-time, given the background
image modification. Polyp dimensions from the image can
also serve as feedback on the selected thresholds \1, \2 to
better suit the geometry of the polyp and OCT probe w.r.t.
the camera frame; given dimensions of the polyp does not
have any effect in our approach.

Another simplification considered in this work is the
constant Jacobian matrix that maps the tendon displace-
ment to camera displacement. This assumption can be
valid for small orientation changes; future work will be
directed towards estimating the Jacobian matrix online.
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INTRODUCTION
Twin-to-twin transfusion syndrome (TTTS) increases

the risk of disability and death in monochorionic twin
pregnancies. Fetoscopic elective laser ablation (ELA) has
been shown to be the preferred treatment for TTTS [1].
During the intervention, a surgeon relies on in-utero
images from a fetoscope and a 2D-ultrasound (US) scan
performed by an assistant. The US view can be used to
guide the scope, and hence the laser fiber, to obtain an
optimal (90°) ablation angle and distance (approximately
10𝑚𝑚) relative to the placental surface during ablation. In
this context, 2D US imaging is somewhat limiting as a 3D
model of the visited placental area is needed for efficient
in-utero navigation.
A good estimation of the local 3D geometry may

decrease the surgeon’s difficulty to navigate the feto-
scope to the target while satisfying the aforementioned
requirements. An intuitive 3D model of the uterus could
be reconstructed in real-time provided 2D US images
are properly calibrated, segmented and localized in 3D
space. So-called local geometric features are essential
components for accurate 3D rigid data registration [2].
However, for TTTS surgery, the accuracy of local geom-

etry features should be further investigated. This abstract
reports on a fast US surface reconstruction framework for
TTTS ELA surgery. Compared to other US surface recon-
structions in the clinical application (mean distance error
< 5 mm) [3], our work achieved good accuracy (0.7 mm
mean distance error). Our work includes three parts:
calibration, segmentation, and reconstruction, as Fig. 1.
A curved surface and a hemispherical cage were used for
experimental validation. The offline reconstruction takes
0.5 ms per image, yielding a total processing time of 75.3 s
for the cage model and 106 s for the curved surface model.
Representation errors of the reconstructions for the cage
model and the curved surface were 0.75 mm and 1.65 mm
on average, respectively.

MATERIALS AND METHODS
The experimental setup consists of: (1) a US machine

(Sonosite, FUJIFILM, USA) with a 5.2-MHz curvilinear
probe; (2) an electromagnetic (EM) tracking system (NDI
Aurora System, Northern Digital Inc., Canada); (3) a
laptop (Intel i7, CPU @2.8 GHz, 8G RAM) to store and
to process all data on-the-fly. Fig.2 shows the setup. The
corresponding poses of the individual US images were

Fig. 1: The reconstruction approach contains three parts:
calibration, segmentation, and reconstruction.

measured by an EM sensor rigidly attached to the US
probe. The calibration phantom and reconstruction models
were placed in a water tank filled with distilled water.
US calibration provides the scale factors and transfor-

mation of the scanned object between US images and
the real world. The calibration matrix can improve the
quality of reconstruction. A 150 × 100 × 200 mm Z-
phantom containing three Z-fiducial modules was used for
US calibration. Each module was made of three layers
of "Z" shaped crossing nylon wires. The Least-Square
method and similar triangles theorem were used to derive
the spatial relationship between the US images and the EM
sensor on the probe holder following the method described
by Li et al. [4]. Our calibration achieved an accuracy of
0.72 mm and a precision of 0.31 mm.

Fig. 2: Overview of experimental setup consisting of an
ultrasound machine, laptop and EM tracking system. After
acquiring all the US images and positions of the US probe,
the reconstructed surface mesh was generated offline.
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The boundaries were extracted by three steps: a Gaus-
sian filter, a threshold binarization, and a segmentation
step were conducted. In the reconstruction, the segmented
pixels were converted from US images into 3D point-cloud
by: 

𝑥𝑡

𝑦𝑡

𝑧𝑡

1


=𝑇 𝑇𝑅 ·𝑅𝑇𝐼 · 𝑇𝑠 ·
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𝑣
0
1


, (1)

where 𝑢, 𝑣 denote the column and row pixel indexes in
the US image; [𝑥𝑡 𝑦𝑡 𝑧𝑡 1]𝑇 are the positions in the EM
tracking system (coordinate frame {𝑇}). 𝑇𝑇𝑅 is the trans-
formation matrix from the sensor on the probe holder {𝑅}
to the frame {𝑇}, measured by the EM tracking system.
𝑅𝑇𝐼 and 𝑇𝑠 were found from the calibration. 𝑅𝑇𝐼 represents
the spatial relationship from the frame {𝐼} (the US image
plane) to the frame {𝑅}. Matrix 𝑇𝑠 is a scaling matrix that
converts the pixel indices of the US image to SI units (in
𝑚𝑚). After point-cloud reconstruction, the surface mesh
was obtained through the ball pivoting algorithm [5]. Two
3D print models (Fig 2) have been designed to validate
the ability to reproduce local geometry features in the
3D reconstruction. To validate the US reconstruction for
fetal surgery, a curved surface and a customized cage with
known geometry were designed to mimic the curved shape
of the uterine boundary.

Fig. 3: Results: in red ground truth model, in blue recon-
structed mesh; a) shows in red the selected points at the
intersection between ribs; b) shows distance calculation
between neighbouring points (cyan lines).

The iterative closest points (ICP) algorithm [6] was used
to register the generated point cloud with the CAD model.
The 3D representation error is the distance between cor-
responding point pairs of reconstruction and CAD model
after registration. To better evaluate the local geometrical
feature of the cage model, the key feature points were
identified manually (marked red in Fig. 3.a). The 25
selected points are the center of the curved ribs intersec-
tion area. Per point four adjacent points were identified
(marked black in Fig. 3.b). The distances between each
red point and the 4 neighboring points were calculated
and compared to the ground-truth from CAD. In total,
distances for the selected points have been evaluated.
Table II reports the mean and SD of the errors.

RESULTS
The reconstruction experiments were repeated 3 times

per model. Table I summarizes the representation errors

TABLE I: Results of the representation error (mm)
Experiments Hemisphere cage Curved surface

1 0.37 1.77
2 0.85 1.40
3 1.02 1.79

average 0.75 1.65

TABLE II: Results of the local distance error (mm)
Experiments Mean Standard deviation (SD)

1 0.69 0.65
2 0.79 0.59
3 0.63 0.45

average 0.70 0.56

of the reconstructions of both the curved and cage surface
(0.75 mm and 1.65 mm on average). Note that the size of
the reconstructed curved surface was 183×185×41.5mm3,
close to the ground truth size 184×184×41.5mm3. The
entire reconstruction took less than 2 min for each model.
The image processing time for every image was 0.5 ms
using Anaconda’s numba library.

CONCLUSIONS
This paper focuses on the capability to reconstruct local

geometry features from US for TTTS ELA surgery. As
ELA surgery requires a certain angle and distance between
the fetoscope and the placenta, communicating such local
features could be helpful to guide surgeons. The presented
work offered representation errors of 1.65mm and 0.75mm
with mean and SD of local distance errors of 0.70mm and
0.56mm, respectively. In combination with robotic control
the reconstruction and navigation assistance could operate
in a more autonomous fashion in the future. The future
work will therefore need to consider issues related to non-
rigid deformation of soft tissue.
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INTRODUCTION
Optical coherence tomography (OCT) is a rapidly

evolving imaging technology that combines a broadband,
low coherent light source with interferometry and signal
processing to produce high-resolution images of living
tissues. Most OCT devices used in clinical studies have
a resolution of approximately 10 `m and a depth of
penetration of up to 2 mm in most soft tissues. How-
ever, the speckle noise introduced by the low coherence
interferometry imaging process and blur from device
motion significantly degrades imaging quality. This has a
strong impact on subsequent analysis and makes clinical
application challenging Therefore, efficient OCT image
enhancement methods are urgently required.

By improving the light source, hardware-based ap-
proaches reduce the noise of the detector and scanner to
some extent, but the speckle or white noise in the imaging
system cannot be eliminated. Software-based approaches
such as non-local means or block-matching and 3D filter-
ing (BM3D) can provide good results, but need laborious
efforts of parameter tuning for different noise levels [1].
Also convolutional neural networks (CNNs) are a potential
solution for such image enhancement task, but supervised
learning methods are laborious in terms of training data
annotation and the use of standard CNNs may lead to loss
of details due to averaging processes [2].

A promising solution for image denoising is Genera-
tive Adversarial Network (GAN), in which two neural
networks compete with each other in a game. There
have been many recent efforts on learning disentangled
representations to do denoise and deblur, which breaks
down, or disentangles, each feature into narrowly defined
variables and encodes them as separate dimensions [3],
[4]. However, these methods have only been applied
separately. In order to remove blur and speckle noise
in OCT image with only one generator, we proposed
an unsupervised learning method based on GAN and
disentangled representation.

MATERIALS AND METHODS
The proposed method consists of three parts: 1) con-

tent encoders 𝐸𝑐, and feature encoders 𝐸𝑏, 𝐸𝑛 for blur
and noise; 2) blurred, noisy, and blurred noisy image
generators 𝐺𝑏, 𝐺𝑛, 𝐺𝑏𝑛, and clean image generator 𝐺𝑐;
3) blurred, noisy, blur-noise, and clean image discrimina-
tors 𝐷𝑏, 𝐷𝑛, 𝐷𝑏𝑛, 𝐷𝑐. Given an input blur-noise data X
and unpaired clean data Y, the content encoder 𝐸𝑐 can

Fig. 1: Workflow of proposed image enhancement method.
X and Y are inputs, subscript of b, c, r, n, bn and cycle
is blurred, clean, reconstructed, noisy, blurred and noisy,
and cycled.

extract content information from corresponding samples,
and 𝐸𝑏, 𝐸𝑛 can estimate the feature information from X.
𝐺𝑏, 𝐺𝑛, 𝐺𝑏𝑛 then take features and content information
to generate corresponding images and 𝐺𝑐 generates clean
image. The discriminators distinguish between the real
and generated images. The framework is illustrated in
Fig. 1. To do image enhancement on unpaired data, we use
disentanglement to generate clean images and decode their
features. For the blur domain, with content information
of 𝐸𝑐 and blur feature of 𝐸𝑏, the generated blur images
guide the encoders 𝐸𝑐 towards extracting content infor-
mation from the blurred images. Similarly, generating and
then distinguishing noisy images from clean ones guides
𝐸𝑐 towards extracting content from noisy images. After
training the model and addressing disentanglement, clean
images can be obtained from using 𝐸𝑐 and 𝐺𝑐.

Our proposed loss function includes five components:
(1) Domain adversarial loss includes content information
loss Lc𝑎𝑑𝑣 , blur feature loss Lb𝑎𝑑𝑣 , noise feature loss Ln𝑎𝑑𝑣 ,
and blur-noise features loss Lbn𝑎𝑑𝑣 . In order to get better
blur and noise features, we pretrained deblur and denoise
module based on GAN with disentangled representations
[3] and shared last layer of generators to 𝐺𝑏 and 𝐺𝑛. The
domain adversarial loss is defined as:

L𝑎𝑑𝑣 = argmin
𝐸,𝐺

max
𝐷

(Lc𝑎𝑑𝑣 + Lb𝑎𝑑𝑣 + Ln𝑎𝑑𝑣 + Lbn𝑎𝑑𝑣) (1)
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(2) Cycle consistency loss:

L𝑐𝑦𝑐𝑙𝑒 =E[| |𝑋 − 𝑋𝑐𝑦𝑐𝑙𝑒 | |1]
+ E[| |𝑋 − 𝑋𝑐𝑦𝑐𝑙𝑒2 | |1] + E[| |𝑌 − 𝑌𝑐𝑦𝑐𝑙𝑒 | |1]

(2)

(3) Reconstruction loss:

L𝑟𝑒𝑐𝑜𝑛 = E[| |𝑋 − 𝑋𝑟 | |1] + E[| |𝑌 − 𝑌𝑟 | |1] (3)

(4) Noise patch loss: According to L𝑋𝑛𝑜𝑖𝑠𝑒 and L𝑌𝑛𝑜𝑖𝑠𝑒 from
noise patch discriminator, we can get noise patch loss as:

L𝑛𝑜𝑖𝑠𝑒 = argmin
𝐸,𝐺

max
𝐷

(L𝑋𝑛𝑜𝑖𝑠𝑒 + L𝑌𝑛𝑜𝑖𝑠𝑒) (4)

(5) KL divergence loss is used to regularize the blur
feature distribution to get close to normal distribution. KL
divergence is minimized to obtain the KL loss:

L𝐾𝐿 =
1
2

𝑁∑︁
𝑖=1

(`2
𝑖 + 𝜎2

𝑖 − log(𝜎2
𝑖 ) − 1) (5)

Considereing the equations above, the main loss func-
tion can be written as:

L =_𝑎𝑑𝑣L𝑎𝑑𝑣 + _𝑐𝑦𝑐𝑙𝑒L𝑐𝑦𝑐𝑙𝑒 + _𝑟𝑒𝑐𝑜𝑛L𝑟𝑒𝑐𝑜𝑛
+ _𝑛𝑜𝑖𝑠𝑒L𝑛𝑜𝑖𝑠𝑒 + _𝐾𝐿L𝐾𝐿

(6)

The subscripted _ are the coefficients of each correspond-
ing loss. The architecture of the encoders and generators
are based on DRGAN [4].

RESULTS

The proposed method was evaluated on a custom
dataset obtained from pork vocals with a commercial
OCT device (Thorlabs TEL320C1). After augmentation,
the dataset included 15600 B-Scan images with resolution
of 1024 × 1736 pixels (ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ).

TABLE I: Ablation study

Metrics
Method PSNR SSIM

Original image 5.61 0.10
Denoise module 20.61 0.66
Deblur module 16.54 0.59

Proposed method 28.67 0.81

To validate the effects of each module in our method,
an ablation study was performed (see Fig. 2). Table I
presents the Peak signal-to-noise ratio (PSNR) and the
Structured Similarity Indexing Method (SSIM) of: original
OCT image with blur and noise, blur image obtained from
denoise module, noise image obtained from deblur mod-
ule, and image enhanced with the proposed method. Table
II summarizes the results of PSNR and SSIM for BM3D,
DeSpecNet (CNN method), SiameseGAN, DRGAN and
proposed method.

(a) Original image (b) Denoise module

(c) Deblur module (d) Proposed method

Fig. 2: Ablation study to evaluate each module and pro-
posed method.

TABLE II: Comparison of image enhancement methods

Metrics
Method PSNR SSIM
BM3D 18.94 0.652

DeSpecNet[5] 22.57 0.713
SiameseGAN[6] 27.41 0.757

DRGAN[4] 26.11 0.772
Proposed 28.67 0.812

CONCLUSIONS AND DISCUSSION
We proposed a novel combined denoise and deblur

method for OCT images via disentangled representation,
which demonstrated promising results in terms of PSNR
and SSIM. To the best of our knowledge, this is the first
work proposing OCT image denoise and deblur based on a
single processing step. For this, we used an unsupervised
learning approach and performed noise, blur and content
disentanglement with corresponding encoders and genera-
tors. In the future, we will further optimize this method for
clinical application and evaluate the image enhancement
performance on extended datasets from open sources and
other OCT devices.
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INTRODUCTION
A cochlear implant (CI) is currently the most effective

treatment for people suffering from sensorineural hearing
loss. They work by converting sound into electrical pulses,
which are sent, through an electrode array (EA), to the
cochlea. The EAs found in commercial CIs can be distin-
guished depending on their position within the cochlea. A
lateral wall electrode array (LEA) sits close to the outer
wall of the scala tympani (ST), the helical chamber of
the cochlea where the EA is inserted. A perimodiolar
electrode array (PEA) sits close to the inner wall of
the ST. Both commercial LEAs and PEAs can generate
intracochlear trauma [1], leading to residual hearing loss,
which itself important to enhance the CI hearing outcomes
for the patient. As an alternative, we proposed a PEA
self-shaping CI that can generate contact forces below the
rupture threshold and that has the potential to overcome
the limitations of current devices [2]. The insertion pro-
cedure has to be studied and optimised to maximise the
benefits derived from this implant. It is known that the
additional skill required to insert PEAs results in worse
reported outcomes [3]. Therefore, in this work, we present
a teleoperated robot that we will use to study the recovery
behaviour of our self-shaping EA.

MATERIALS AND METHODS
Self-Shaping implant. A thermally responsive shape

memory polymer (SMP) can recover its original shape
from a temporary one, achieved after deformation and
fixation when under an external temperature stimulus (e.g.
body temperature). To fabricate the self-shaping EA, we
start from SMP pellets (SMP Technologies Inc., Japan) to
create a cylindrical preform with the final device cross-
section. The cross-section has an inner lumen that can be
used for sensing and therapeutics, such as the corticoids
used in clinical practice. The preform was used to obtain
filaments of the desired EA diameter following a thermal
drawing process; filaments were then moulded into a 2D
shape of a 3x scaled-up version of the ST. The implant was
moulded at 80°C for 15 minutes, using a CNC machined
Teflon mould (Proto Labs Ltd., UK), and after cooling,
it was attached to a fixture that was used to connect the
implant to the robot. Then, the implant was programmed

Fig. 1: A rendering of the proposed robot showing the key
components. RM, rotary motor

into a straight shape. We warmed it up by placing it in
water slightly above its transition temperature (35 °C) for
30 s. Immediately after, the implant was placed in a 4°C
bath for another 30 s to fix its temporal position.

Robotic system design. A robot with 4 degrees of free-
dom was developed to manipulate our implant in a master-
slave fashion. The robot design is compact to minimise
its footprint in the operating theatre and lightweight to
facilitate its manipulation. The linear insertion motion is
achieved with a lead screw actuated with a brushless DC-
Servomotor (2057S 024B K1155, Faulhaber, Germany).
This motor can generate speeds that minimise trauma, and
it uses analogue hall sensors, which provide a lightweight
and compact alternative to encoders. The insertion device
is attached to the lead screw and sits on a linear slider
(Misumi, Germany) that acts as an anti-rotation feature
and helps minimise friction. The motion is smooth with
a total stroke length of 77 mm, but an inherent problem
of lead screws is their backlash that is solved here by
preloading the system manually before each insertion. The
insertion tool has a second brushless DC-Servomotor with
analogue hall sensors (1226A 012B K1855, Faulhaber,
Germany) combined with a planetary gearhead with a
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Fig. 2: Snapshots showing the self-shaping cochlear implant following the insertion approach 1 (top) and 2 (bottom)

reduction ratio of 16:1 (12/4, Faulhaber, Germany). This
motor allows to accurately control the implant roll, which
is necessary to avoid touching the cochlear walls and
translocation from the ST to the SV. A fixture is pressed fit
into the motor shaft to load the implants. The yaw motion
is actuated via a custom brushless DC-Servomotor motor
with analogue hall sensors (Maxon Group, Switzerland),
which can accurately control the insertion approach angle.
The height can be adjusted manually. A rendering of the
robot is shown in Fig. 1

Robotic system control. To control the Faulhaber
motors we used 2 EtherCAT controllers (MC 5004 P STO,
Faulhaber, Germany). A serial EPOS2 Module 36/2 was
used to control the Maxon motor. The linear motion was
velocity-controlled to maintain safe speeds, while the roll
and yaw were position-controlled to get the desired angles
with minimum error. The controllers were programmed in
C++ on a Linux PC. Teleoperation was performed in a
master-slave configuration with a keyboard controller as
the master device.

RESULTS

The experiment was carried out using a 3x scaled-
up planar model of the cochlea adapted from an open-
source design [4]. The model was enclosed into a chamber
where the body temperature was simulated. A surgical
microscope was used to visualise and assess the insertion
process. An additional digital camera (Thorlab Inc., USA)
was placed perpendicular to the microscope to visualise
the implant roll. Before insertion, the implant was kept
at 5°C, and after loading the device into the robot, the
operator started the insertion immediately. We tested two
different insertion approaches. In the first one, the operator
would approach the cochlea entry point and then insert the
device progressively. In the second one, the operator was
instructed to follow an approach similar to the Advance
Off-Stylet® (AOS), where the implant has to be inserted
rapidly until the first turn to avoid curling and then
progressively until the device is fully inserted.

The insertion time was similar in both cases: 59 s and
70 s, respectively. To validate the insertion, we measured
the depth insertion angle, which is considered successful
for depth angles between 330° and 390° [5]. The self-
shaping implant was inserted up to a depth angle of 290°
and 379°. Therefore, only approach 2 can be considered
successful for insertion depth. It was also noted that
the contacts with the cochlear walls (identified by visual
inspection) were significantly minimised for the second
approach, as shown in Fig. 2.
CONCLUSION AND DISCUSSION

The self-shaping CI used in this work had previously
shown the ability to generate normal forces below the
rupture threshold. However, its behaviour during insertion
had not been studied. In this work, we have used a
teleoperated robotic system to study the best approach
to insert such an implant. The experiment shows that an
AoS insertion technique has the potential to minimise
contacts with walls as well as improve insertion depth.
Future steps will focus on studying this technique in-
depth, understanding how recovery forces evolve during
insertion, and investigating different modes to operate the
robotic system. We will also explore different sensing
approaches to retrieve the position of the implant within
the cochlea in a realistic way.
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INTRODUCTION
Endovascular catheterization is a complex minimally

invasive procedure which requires external imaging for
intra-operative visual guidance. Fluoroscopy is the com-
monly chosen imaging modality. Yet, it is an X-ray
based modality, limited to two-dimensional views of the
imaged scene. Consequently, endovascular interventions
still remain challenging and improved visual feedback
would thus be advantageous [1]. Intra-operative modelling
of blood vessels using local information from sensors
embedded in the catheter has the potential to greatly
improve surgical robots’ or clinicians’ awareness during
navigation, while reducing the use of X-ray radiation [2].

In a previous work [3], a method for constructing a real-
time intra-operative 3D approximation of the vessel geom-
etry around a catheter tip was proposed. Intravascular Ul-
trasound (IVUS) imaging and Electromagnetic (EM) pose
sensing were used together with an Unscented Kalman
Filter (UKF) to estimate the best fitting local cylinder.
The method showed good approximation capability of
the vessel geometry, but in the absence of side branches.
Nonetheless, the modelling of side branches is imperative
as in some cases, the catheter must be steered into them
to reach the desired target site. Additionally, they could
serve as important navigation landmarks.

In this work, a new vessel model is proposed to allow
estimating and representing side branches. In particular,
as shown in Fig. 1, the side branches are modeled as
holes in the local cylinder model that represents the main
vessel (MV). Also, an UKF is implemented for inferring
the parameters of the cylinder holes from synthetic IVUS
and EM data. The proposed method is tested in a virtual
vessel model making use of simulated IVUS and EM data.

MATERIALS AND METHODS
Two UKFs are used to: (1) locally approximate the MV

by a cylinder around the catheter tip, as described in [3]
and (2) approximate vessel side branches as holes in the
aforementioned cylinder model.
Side-branches modelling: A side-branch is represented
by a hole characterized by three variables with respect to
the cylinder frame {𝑐𝑦𝑙}, as shown in Fig. 2a: i) an angle

This work was supported by the ATLAS project. The ATLAS project
has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant
agreement No 813782.

Fig. 1: Illustration of the MV model (light blue cylinder) and the
side-branches models (holes in the cylinder, outlined in yellow).
The proposed method is used to estimate the hole(s) state.

𝛼 ∈ [0, 2𝜋) in the 𝑥𝑦 plane of the cylinder perpendicular to
its 𝑧-axis, ii) a displacement 𝑑𝑧 of the hole along the 𝑧-axis
of the cylinder, and iii) a radius 𝑟 . For each side branch
𝑗 among the 𝐵 detected side branches around the catheter
tip ( 𝑗 = 1, · · · , 𝐵), the hole parameters 𝛼 𝑗 , 𝑑𝑧 𝑗 and 𝑟 𝑗 are
added to the state vector to estimate, here defined as:

x𝑘 =
[[𝛼1 𝑑𝑧1 𝑟1] · · · [𝛼𝐵 𝑑𝑧𝐵 𝑟𝐵]

]𝑇
. (1)

Side-branch detection: In the case at hand, synthetic
IVUS data is directly generated as vessel contour points
by intersecting the 𝑥𝑦 plane of the IVUS frame {𝑖} (see
Fig. 1) with the simulated vessel. For each extracted con-
tour, side-branch detection is carried out. A side branch
is considered detected when i) the distance between the
center of the side-branch ostium and its projection on the
𝑥𝑦 plane of {𝑖} is smaller than the side branch radius; and
ii) the distance of the IVUS probe to the projected side
branch ostium’s center is smaller than a user-defined value
(e.g. 20 mm) (see Fig. 2b). Note that in simulation, both
the side-branch ostium center and the radius are known
from the mesh geometry. After this step and the estimation
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Fig. 2: (a) Overview of the three variables that characterize a
hole state in the MV cylinder model. 𝛼 and 𝑑𝑧 determine the
position of the side-branch hole in the cylinder, while 𝑟 deter-
mines its radius. (b) Depiction of the side branch detection and
initial 𝑑𝑧-value calculation strategies. The red circle represents
the side branch ostium characterized by a center location and a
radius; the yellow rectangle represents the MV cylinder model.
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of the local MV cylinder model, the hole(s) state estima-
tion is performed. From the side branch detection strategy,
the initial 𝛼-values are obtained by projecting the branch
center point onto the 𝑥𝑦-plane of {𝑖} and then determining,
on the same plane, the angle between the origin of {𝑖}
and the projected point. Similarly, the initial 𝑑𝑧-values
are calculated first, by finding the intersection point with
the MV estimated cylinder and a line along 𝛼 (defined in
the 𝑥𝑦-plane of {𝑖}) and second, by taking the distance
from the cylinder position (origin) to the intersection
point projected onto the cylinder 𝑧 (longitudinal) axis. A
representation of how these initial values are determined is
shown in Fig. 2b. Finally, considering that a side branch is
stationary relative to the moving local cylinder modelling
the MV, a side branch is deleted from the state vector
whenever 𝑑𝑧 exceeds a given threshold. This threshold is
computed based on the height of the cylinder model from
the MV and it is an indication that the side branch is no
longer close to the catheter tip.
Filtering for side-branches model estimation: In the
UKF implementation hereby described, the hole(s) state
is first predicted based on the transformation of the MV
approximated cylinder between the current and the previ-
ous frames, and then updated by considering the contour
points of the vessel lumen and side branches in the 𝑥𝑦-
plane of the IVUS probe. Both 𝛼 and 𝑑𝑧 at time 𝑘 − 1
are expressed in the new frame {𝑐𝑦𝑙}𝑘 by, respectively,
considering the rotation and the translation of the cylinder
around its 𝑧-axis between 𝑘 − 1 and 𝑘 , as described in

x𝑘 = x𝑘−1 + u(e, f,R, p), where

u =


−𝑎𝑡𝑎𝑛2((𝑖𝑘R𝑖𝑘−1

𝑖𝑘−1 f)𝑖𝑘e , (𝑖𝑘R𝑖𝑘−1
𝑖𝑘−1e) 𝑖𝑘e )

−(𝑤𝑘p −𝑤𝑘−1 p) ·𝑤𝑘−1 d
0


.

(2)

𝑖𝑘e and 𝑖𝑘 f are unit vectors along the cylinder 𝑥 and 𝑦 axes,
respectively, at time 𝑘 expressed in the IVUS frame {𝑖};
𝑖𝑘R𝑖𝑘−1 is the rotation matrix of the IVUS frame {𝑖}
between time 𝑘 − 1 and 𝑘; 𝑤𝑘p is the cylinder position in
the world frame {𝑤} at time 𝑘; and 𝑤𝑘−1d is the direction
of the cylinder in frame {𝑤} at time 𝑘 − 1.

In order to describe the observation function h(x𝑘)
output, the cylinder with holes is intersected with the 𝑥𝑦-
plane of {𝑖}. First, the distances of the origin of {𝑖} to
𝑀 evenly spaced (every 2𝜋

𝑀−1 radians) intersection points
𝑘
𝑖 c̃(𝑘 = 1, ..., 𝑀 = 10) of the 𝑥𝑦-plane of {𝑖} with an
infinite cylinder are determined. Second, the distances of
the intersection points 𝑆 within the side-branch section
(subset of 𝑀) are adjusted by a user-defined factor of 1.3:

h(x𝑘)=
[| |1𝑖 c̃| |· · · [[1.3· | |1𝑖 c̃| |· · ·1.3· | |𝑆𝑖 c̃| |]] · · ·| |𝑀𝑖 c̃| |]𝑇 (3)

RESULTS
An experiment was carried out with a virtual catheter

advancing inside a simulated aortic model with 4 side
branches (see an example with 3 side branches in Fig. 1).
Experimental setup (simulation): The catheter was
steered repeatedly by translating it 10 mm forward at
2 mm/s, followed by a series of bending motions at 5 ◦/s:

i) 36◦ bending of the catheter in one plane, ii) 360◦
rotation of the bending plane and iii) -36◦ bending in the
bending plane, returning to the original orientation. For
more realistic conditions, zero mean Gaussian noise with
a standard deviation of 0.3 mm and 0.5◦ was added to the
translation and rotation components of the catheter EM
data, respectively; and zero mean Gaussian noise with a
standard deviation of 1 mm was added to the IVUS data.
The IVUS probe, the EM sensor and the catheter tip were
assumed to be aligned by construction. Also, Gaussian
noise with zero mean and 5° standard deviation was added
to the 𝛼-values obtained from side-branch detection.

TABLE I: UKF parameters for side-branches model estimation
x0 [𝛼detected dzdetected 4 mm]
Px0 diag

( [ 𝜋
18 5 mm 0.1 mm

] )2
Pv𝑘 diag

( [ 𝜋
180 0.5 mm 0.1 mm

] )2
Pn𝑘 diag( [4 mm . . . 4 mm] )2

[^ 𝛼 𝛽] [0 1 2]

Hole estimation evaluation: The filter performance was
evaluated by means of two error metrics, computed at
each simulation step: i) the distance error of the approx-
imated side-branch representation and the ground-truth
side-branch model (hole), and ii) the difference between
the estimated radius and the ground-truth radius. The
errors progression for each side branch and the errors
distribution for all branches, including the median and
interquartile range values, are shown in Fig. 3.
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Fig. 3: Position and radius errors progression (left) and
distribution (right) of the different side-branches models.
CONCLUSIONS AND DISCUSSION

The proposed method aims at determining reliable 3D
vessels including side branches by expanding a prior
cylinder model. From the low medians and IQRs shown in
Fig. 3 (Radius: 0.10 mm and 0.08 mm; Position: 1.18 mm
and 1.26 mm, respectively), the obtained results demon-
strate the potential of using holes to model the ostium
of side-branches. Future work is planned to compare the
hole model with more detailed side-branch models and to
conduct in vitro validation with real IVUS and EM data.
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INTRODUCTION
Nowadays, catheter-based imaging systems are increas-

ingly used in a variety of clinical applications in order
to obtain side-viewing luminal and transmural images.
Mainstream side-viewing catheters often use Intravascular
Ultrasound (IVUS) or Optical Coherence Tomography
(OCT) to acquire cross-sectional views of the intralumi-
nal environment. IVUS is commonly used for imaging
intravascular pathologies such as aneurysms or atheroscle-
rotic plaque [1]. Side-viewing OCT can also be used to
visualize vascular structures, as well as larger lumens, such
as the colon or the respiratory lung airways. Both imag-
ing modalities have their characteristics: IVUS can see
through blood, but experiences problems seeing through
air. OCT does not have that problem, but it relies on
injection of saline solution or contact with tissue for imag-
ing in blood. The resolution of OCT is typically higher
than of IVUS whereas IVUS has a larger image depth.
Despite their differences, in side-viewing catheters, both
methods tend to produce images with a similar appear-
ance. Automatic segmentation of both OCT and IVUS is
an appealing feature for supporting real-time diagnosis or
offline image analysis. However, the resemblance between
these two imaging modalities has not yet been exploited to
produce robust tissue segmentation algorithms. Traditional
methods for segmentation of OCT or IVUS use hand-
crafted edge detection filters, mathematical morphology,
Otsu’s automatic thresholding, intersection of radial lines
with lumen boundaries, Markov-random fields and light
back-scattering [2].

This work proposes a novel deep Convolutional Neural
Network (CNN) architecture, shown in Fig. 1, based on
explicit coordinate encoding networks designed for multi-
modal image processing. Aside from improved contour
segmentation efficiency, the proposed approach directly
provides the relative distance between tissue surface and
scanning center. The proposed architecture directly en-
codes in a coordinates vector the position of the detected
object contours in the polar domain, without pix-wise
segmentation nets [3] or additional detection networks.
Moreover, the same architecture is applied to OCT and
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Fig. 1: Proposed network architecture featuring a parallel multi-
scale encoding scheme.

IVUS images for the task of lumen segmentation and then
compared with the state-of-the-art U-net architecture [3].

MATERIALS AND METHODS
Inspired by shape encoding, the proposed network

architecture predicts the contour coordinates of surgical
objects and/or intraluminal structures. In particular, the
final boundary coordinates prediction occurs in one shot
and does not rely on detection nets or segmentation nets
as backbone. The proposed method, shown in Fig. 1,
first adapts an initial shallow Resnet block to produce
raw features with the same dimension as the 2D input
image (orange arrow in Fig. 1). Then, it follows a parallel
multi-scale encoding scheme (blue dashed box in Fig. 1).
Adaptive pooling modules, after identity Resnet blocks,
extract multi-scale hierarchical coordinates position de-
scriptors which potentially contain information for predict-
ing different scales of contour coordinates. For instance,
the first order of position descriptor 𝒇 1 ∈ R𝑊×1×𝑛𝑥

matches the width 𝑊 of the input image 𝑰 ∈ R𝑊×𝐻 .
𝒇 1 extracts features with higher spatial correspondence.
In contrast, lower scale descriptors 𝒇 2 and 𝒇 3 represent
the position information with lower scale in the horizontal
direction, but they extract more abstract features that are
less sensitive to noise. Note that Fig. 1 just illustrates the
schematic of the proposed networks. Applications can thus
have more than 3 coordinates descriptors 𝒇 𝑖 (𝑖=1,2,3...).
The higher parallelism allows for much faster inference
compared to extracting hierarchical information in a cas-
caded way, as implemented in the U-Net architecture. The
fusion encoder (gray block in Fig. 1) is deployed after the
sub-branches to re-organize the multi-scale information,
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TABLE I: Comparison with post-processed U-net on the different datasets with both region- and boundary- based metrics

Jaccard index(↑) Dice coefficient (↑) Boundary error/pixel (↓)
Lumen Catheter Tissue Lumen Catheter Tissue R1 v R2 R2 v R3

Phantom IVUS UNet 0.953±0.032 0.970±0.014 0.984±0.013 0.976±0.018 0.985±0.007 0.992±0.007 2.32±0.34 3.39±2.36
Phantom IVUS Ours 0.974±0.017 0.988±0.006 0.992±0.006 0.987±0.009 0.994±0.003 0.996±0.003 0.26±0.11 1.42±1.04
Phantom OCT UNet 0.973±0.035 0.937±0.043 0.600±0.297 0.985±0.019 0.966±0.025 0.699±0.242 2.54±0.38 5.51±11.2
Phantom OCT Ours 0.988±0.013 0.984±0.011 0.851±0.105 0.993±0.007 0.991±0.005 0.915±0.065 0.73±0.40 1.87±1.59
In vivo OCT UNet 0.704±0.117 0.916±0.019 0.894±0.051 0.820±0.092 0.956±0.010 0.943±0.029 2.06±0.47 11.8±9.84
In vivo OCT Ours 0.918±0.088 0.946±0.015 0.958±0.070 0.954±0.066 0.972±0.007 0.976±0.059 0.99±0.28 4.39±2.83

Phantom (IVUS)
with a side branch

Phantom (IVUS)
without contact

Colon tissue
contact (OCT)

Phantom (OCT)
without contact

C
ar

te
s

ia
n

P
o

la
r

G
ro

u
n

d
-T

ru
th

Catheter Tissue Lumen Contact No backscattering signal

Fig. 2: Qualitative segmentation results.
which aligns all lower scale features to the original image
scale, and produces A-line level contour coordinates as
the boundary detection result.

RESULTS
An IVUS probe embedded at the tip of a robotic

catheter with an active distal segment was steered in
a poly(vinyl alcohol) (PVA) cryogel vessel phantom to
collect the first dataset (3500 images). OCT images were
acquired by steering an OCT probe in a colon phantom
with layered tissue [4] (3000 images) as well as in an in
vivo swine colon [5] (2000 images).
Qualitative results: Fig.2 shows representative results of
the boundary detection experiments. Segmentation results
are shown both in Cartesian and Polar domain. The
detected boundaries are used to segment images. The
catheter is shown in green, the tissue area is marked red,
lumen (air or blood) is shown in blue and contact between
catheter/sheath and tissue is highlighted in purple. Finally,
A-lines without back scattering are marked yellow. The
first column of Fig. 2 shows the IVUS catheter in contact
with the tissue and close to a side branch, visible in
the image. The second column shows a case where the
catheter with IVUS is inside the phantom (small lumen)
with good lumen contrast and no contact with the tissue.
The third column is taken with OCT in a large lumen.
The catheter is pressed in a tight contact between plastic
sheath and tissue. The fourth column, in the same large
lumen, shows the tissue mostly as a flat surface with the
rest of the image showing background noise.
Validation strategies: For both IVUS and OCT, the
acquired images were split into train and test dataset
by 2:1. The region segmentation accuracy was computed

by means of the Jaccard index and the Dice coefficient,
comparing the proposed method with a U-net trained with
GAN loss [3]. As shown in Table I, the proposed architec-
ture shows higher accuracy for all datasets. Furthermore,
the U-net does not directly output the contour position.
Through post-processing of the boundaries extracted from
the U-net, the Euclidean distance with the ground-truth
boundary was computed as an additional validation metric.
Errors for 2 boundaries between 3 regions were calculated
(regions of catheter, tissue and lumen). The last two
columns of the Table I show the pix errors of each
boundary ("R1 v R2" and "R2 v R3" denote boundaries
of catheter/lumen and lumen/tissue, respectively). The
proposed method has significantly lower errors compared
to the prediction based on U-net. Mean distance errors
are reduced from 5.4±5.5 to 1.9±1.2 for OCT images,
and from 2.9±1.8 to 0.8±0.9 for IVUS images.
CONCLUSIONS AND DISCUSSION

In this work, a novel boundary detection architecture is
proposed for polar domain processing of images acquired
from side-viewing catheters. The proposed approach is
applied to two different imaging modalities and evaluated
by both area and boundary based metrics. The results show
that, in comparison to state-of-the-art methods, higher
accuracies are obtained for both OCT and IVUS. More-
over, no post-processing is required to predict the contour
coordinates. The proposed method showed superior per-
formance with accuracy improvements by 20% for side-
viewing catheter images. Future work will investigate the
use of this architecture for other tasks requiring boundary
prediction such as e.g. for inspection of the esophagus
by a capsule catheter. Further improvements could follow
from predicting the existence probability for every object
per A-line.
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INTRODUCTION
Twin-to-twin transfusion syndrome (TTTS) is a con-

dition where the blood flow in placenta anastomoses are
unevenly distributed and occurs in 10-15% of mono-
chorionic twin pregnancies. Without a surgical procedure,
such as fetoscopic laser photocoagulation, this can lead to
the death of both fetuses [1]. To assist the identification
of placental blood vessels deep learning-based vessel
segmentation can be applied.

Vessel segmentation of fetoscopy images. Sadda et
al. [2] proposed a U-Net for segmenting placental blood
vessels with class-weighted cross-entropy loss to deal with
imbalance between vessels and non-vessel segments. Bano
et al. [3] proposed a vessel segmentation approach with
combined BCE and Jaccard loss as a preprocessing step
to perform mosaicking.

Semi-supervised learning (SSL) is a technique to
combine a (small) labelled dataset with a (larger) un-
labelled dataset. The combined dataset helps the model
to generalise better and it has proven to be useful in
the medical image analysis field where manual image
annotation is very costly and requires experts. Most SSL
solutions are based on assumptions such as smoothness,
consistency, clustering, or low-density [4].

Semi-supervised vessel segmentation has previously
shown applications for retina, brain and coronary data [5].
Commonly used approaches include proxy-labelling (self-
training, co-training), consistency regularisation (temporal
ensembling, mean-teacher), hybrid methods (MixMatch,
FixMatch), GAN (SGAN) and graph-based methods (label
propagation) [4].

MATERIALS AND METHODS
In this work, a self-training network following the semi-

supervised pseudo-labelling approach with majority voting
using test-time augmentation is proposed. A U-Net is used
to perform binary vessel segmentation.

A ResNet-18 backbone was used. The model was
trained for 500 epochs, with a batch size of 32, and
an image size of 512x512, with 1 channel (grayscale).
Weighted BCE loss, adam optimizer and a learning rate
of 0.0003 were chosen.

∗This research was supported by the Wellcome/EPSRC Centre
for Interventional and Surgical Sciences (WEISS) [203145/Z/16/Z];
the Engineering and Physical Sciences Research Council (EPSRC)
[EP/P027938/1, EP/R004080/1, EP/P012841/1]; and the Royal Academy
of Engineering Chair in Emerging Technologies Scheme.

Fig. 1: Method overview: Loop of training and pseudo
label generation after initial training on only manually
annotated data until model reaches F-score > 0.5.

The used fetoscopy dataset [6] consists of 18 videos
and is randomly split into train set (14), validation set (2)
and test set (2) without mixing extracted images between
the sets. Images from the 14 videos of the training set are
extracted, 1607 labelled images are used for supervised
learning and 5922 unlabelled images are used for the
generation of pseudo labels and therefore training set
enhancement.

Self-training first uses a small amount of labelled data
to train a model. The model then assigns pseudo-labels
to unlabelled data and are used as the ground truth for
further training [4].

Test-time augmentation (TTA) can, similarly to test-
time dropout, be used for the estimation of uncertainty by
measuring the diversity of predictions with either variance
or entropy [7]. An average binary mask can be created by
majority pixel voting.

SEMI-SUPERVISED SELF-TRAINING NETWORK
For the proposed self-training network a U-Net is first

trained in a supervised fashion using labelled data until it
reaches an F-score above 0.5. From this point on whenever
a model reaches a higher F-score, or after 15 epochs,
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pseudo labels are generated/updated for the unlabeled data.
The pseudo labels are generated using majority voting
of the original and 5 augmented versions of the image
(horizontal flip, vertical flip, horizontal and vertical flip,
lowered contrast, smoothed). The prediction mask from
the original image has a higher weight than the other
augmentations. The majority mask is only used, if the
mean between the F-score of the original and each of the
augmented versions is higher than 0.8. Furthermore, more
than 5 pixels need to be the foreground class. For each
epoch, 250 randomly chosen pseudo-labelled images are
used in addition to the training data. The overall workflow
of our proposed semi-supervised self-training network is
shown in Fig. 1.

CONCLUSIONS AND DISCUSSION

The network reached a validation F-score of 0.5 after
21 epochs. The final model was chosen with a validation
F-score of 0.6599. By introducing the pseudo labels, gen-
erated by majority voting, the semi-supervised approach
favours undersegmentation compared to an equivalent
fully supervised baseline, only trained on labelled data.
This can be seen by comparing the precision and recall
values. The amount of false positives is higher in the
baseline. See Table I.

Model F-score IOU Precision Recall
Base 0.6073 0.4699 0.56 0.78
Semi 0.6197 0.4844 0.62 0.72

TABLE I: Results of Semi-supervised approach and base-
line, using a hold-out testset.

Fig. 2: Unique images seen by neural network, including
1607 labelled images. The labelled data and 250 randomly
shuffled pseudo label images are used per epoch.

Conclusion: The proposed self-training approach for
vessel segmentation gave a similar F-score as the super-
vised baseline, but reduced false positives.

Future work: Self-training networks have the disadvan-
tage, to be unable to correct their own mistakes. Biased
and wrong segmentations can be amplified, resulting in
wrongly confident pseudo labels. More research in the
choice of pseudo labels should be done. Furthermore,
semi-supervised approaches with two models could be
considered.

Fig. 3: F-score values for training and validation of base
and semi. Showing a drop in train fscore when introducing
pseudo labels from epoch 22.

(A) Image (B) GT (C) Base (D) Semi

(E) Image (F) GT (G) Base (H) Semi

(I) Image (J) GT (K) Base (L) Semi

Fig. 4: Example images, showing oversegmentation
from the baseline and undersegmentation of the semi-
supervised approach, using the hold-out test set.
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INTRODUCTION
Hysteroscopy is an endoscopic gynaecological proce-

dure that allows visual inspection of the uterine cavity
and surgical treatment of uterine pathologies. During this
procedure, a hysteroscope, which is a long slender instru-
ment with a camera, is introduced in the uterus through the
vagina and the cervical canal without making incisions.
Recent advancements enabled outpatient hysteroscopic
treatment, which also introduced a new challenge: as the
cervical canal is the narrowest and the most sensitive part
of the uterus, the clinician should be extra thorough and
avoid any abrupt motion not to cause perforation or patient
discomfort [1]. Future gynaecologists can train the skills
required for successful hysteroscopy using box trainers,
such as the commonly used HYST+T (European Academy
of Gynaecological Surgery, Belgium) [2], which consists
of a plastic uterus model placed inside a silicone vagina
model. However, such simulators lack a realistic cervix
model, impeding its use for practicing skills regarding pain
management and careful cervix dilation.

This work presents the first prototype of an actuated
cervix model for hysteroscopy training. To this end, an
actuated device simulating the cervical dilation behaviour
was designed and evaluated. Compact design and sim-
plicity allows the system to be effortlessly integrated
into existing box trainers. A series of stress tests was
carried out to assess repeatability, stability and suitability
of the proposed actuated phantom to represent cervical
dilation behaviour. The results of the tests suggest an
achievable repeatability below 0,5 mm. Therefore, the
proposed device can be suitable for integration in existing
box trainers. However, further research is necessary to
finalize the haptic device. Additionally, user experiments
should be carried out to validate the device and its use for
training purposes.

MATERIALS AND METHODS
Other solutions for cervix dilation simulation have

already been demonstrated previously [3]. However, this
phenomenon has not been addressed in the field of hys-
teroscopic training, in which dynamic interaction and the
level of force applied by the clinician plays the most
important role. The working principle of the device is
based on two arrays of rotary actuators attached to the
silicone cervix model via a set of cables (Figure 1).
This approach allows for independent dilation control
both at the internal and external os of the phantom.
The haptic device consists of four main parts: the tissue

Fig. 1: The view upon the dilated haptic cervix phantom
with medical forceps inserted inside.

phantom, the sensor, the actuator, and the controller. To
simulate dilation behaviour, the sensor measures the forces
applied to the cervical walls as a result of hysteroscope
insertion. Based on these measurements, the controller can
take the required action, controlling the dilation of the
canal. Hence, the tissue allows for easier passage of a
hysteroscope.

The selected material for the tissue model is Ecoflex
(Smooth-On, US) silicone with a Shore hardness of 00-
50. As determined in tensile tests by Liao et al. [4], E-
modulus of this material is of an order of magnitude of 60
kPa. This value lies within the range of average cervical
stiffness determined in a study by Castro et al. [5], and is,
therefore, considered sufficient for the scope of this work.

Cyclic loading tests with visual measurements were
executed with the prototype of the actuated phantom. This
experimental setup consisted of the silicone phantom and
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six actuators, four MCUs to control the linear actuators
simultaneously, and a camera to measure dilation. The
goal of the experiments was to verify the repeatability,
cycling stability, and suitability of the proposed actuated
phantom to represent cervical dilation behaviour. The
same tissue phantom was subjected to three sets of 250
loading cycles, each separated in time by at least one hour
to allow motors and electronics to cool down. Two pairs of
Arduino boards, each board being supplied with 12 V DC
and fitted with a motor shield, allowed for simultaneous
control over the average motor terminal voltages by the
means of pulse width modulation (PWM).

RESULTS AND DISCUSSION
A total of 13 835 video frames, split into three sets of

measurements, was analyzed using Ilastik [6] and ImageJ
[7]. It should be noted that, by evaluating the video
footage, it was noticed that the motion resulting in di-
lation was not smooth. Instead, a stick-slip like behaviour
was observed. A possible cause for this phenomenon is
mechanical friction inside the motors, which was not eas-
ily counteracted by the slowly increasing motor torques,
therefore resulting in interplay between static and dynamic
friction. Moreover, because terminal voltages were directly
controlled, rather than the rotor current, momentary torque
was not necessarily proportional to the control inputs
when the motors were not stalled.

Fig. 2: The plot showing the maximum Feret diameter of
the cervical canal across the loading cycles as a function
of time.

The maximum Feret diameters of the cervical canal are
plotted in Figure 2, as a function of time for all three
runs of the experiment. Considering the cycle peaks for
each run, the graph follows a similar course, which can
be subdivided into two regions. The first region ranges
between t = 0 and a timestamp at which a sudden drop is
noticed in the top peaks. This timestamp is different time
for each run but the drop has the same amplitude. From

the results and setup, there is no obvious cause for this
drop. At minimal dilation, upward drift was observed in
both the minimal and maximal Feret diameters, suggesting
material creep. With standard deviations of 0,12 and 0,06
for maximal and minimal Feret diameter results, respective
repeatability ranges are 0,46 and 0,24. Like the maximal
dilation results, spread within runs is lower, with values
below 0,2 mm.

CONCLUSIONS
To summarise, the proposed design fulfils most of

the user requirements, only with curvature to be tested.
To finish the haptic device, which can at least render
the dilation behaviour of a straight cervix of average
dimensions, without any pathologies, the following steps
need to be undertaken:

1) The proposed sensor should be tested at the desired
scale, before being calibrated and integrated into the
haptic device.

2) Once the hardware components are assembled and
tested, the controller can be implemented and tuned.

3) Final step involves integration of the platform into
an existing box training system and user experiments
with clinicians.
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insertion. Based on these measurements, the controller can
take the required action, controlling the dilation of the
canal. Hence, the tissue allows for easier passage of a
hysteroscope.

The selected material for the tissue model is Ecoflex
(Smooth-On, US) silicone with a Shore hardness of 00-
50. As determined in tensile tests by Liao et al. [4], E-
modulus of this material is of an order of magnitude of 60
kPa. This value lies within the range of average cervical
stiffness determined in a study by Castro et al. [5], and is,
therefore, considered sufficient for the scope of this work.

Cyclic loading tests with visual measurements were
executed with the prototype of the actuated phantom. This
experimental setup consisted of the silicone phantom and
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six actuators, four MCUs to control the linear actuators
simultaneously, and a camera to measure dilation. The
goal of the experiments was to verify the repeatability,
cycling stability, and suitability of the proposed actuated
phantom to represent cervical dilation behaviour. The
same tissue phantom was subjected to three sets of 250
loading cycles, each separated in time by at least one hour
to allow motors and electronics to cool down. Two pairs of
Arduino boards, each board being supplied with 12 V DC
and fitted with a motor shield, allowed for simultaneous
control over the average motor terminal voltages by the
means of pulse width modulation (PWM).

RESULTS AND DISCUSSION
A total of 13 835 video frames, split into three sets of

measurements, was analyzed using Ilastik [6] and ImageJ
[7]. It should be noted that, by evaluating the video
footage, it was noticed that the motion resulting in di-
lation was not smooth. Instead, a stick-slip like behaviour
was observed. A possible cause for this phenomenon is
mechanical friction inside the motors, which was not eas-
ily counteracted by the slowly increasing motor torques,
therefore resulting in interplay between static and dynamic
friction. Moreover, because terminal voltages were directly
controlled, rather than the rotor current, momentary torque
was not necessarily proportional to the control inputs
when the motors were not stalled.

Fig. 2: The plot showing the maximum Feret diameter of
the cervical canal across the loading cycles as a function
of time.

The maximum Feret diameters of the cervical canal are
plotted in Figure 2, as a function of time for all three
runs of the experiment. Considering the cycle peaks for
each run, the graph follows a similar course, which can
be subdivided into two regions. The first region ranges
between t = 0 and a timestamp at which a sudden drop is
noticed in the top peaks. This timestamp is different time
for each run but the drop has the same amplitude. From

the results and setup, there is no obvious cause for this
drop. At minimal dilation, upward drift was observed in
both the minimal and maximal Feret diameters, suggesting
material creep. With standard deviations of 0,12 and 0,06
for maximal and minimal Feret diameter results, respective
repeatability ranges are 0,46 and 0,24. Like the maximal
dilation results, spread within runs is lower, with values
below 0,2 mm.

CONCLUSIONS
To summarise, the proposed design fulfils most of

the user requirements, only with curvature to be tested.
To finish the haptic device, which can at least render
the dilation behaviour of a straight cervix of average
dimensions, without any pathologies, the following steps
need to be undertaken:

1) The proposed sensor should be tested at the desired
scale, before being calibrated and integrated into the
haptic device.

2) Once the hardware components are assembled and
tested, the controller can be implemented and tuned.

3) Final step involves integration of the platform into
an existing box training system and user experiments
with clinicians.
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INTRODUCTION
Several procedures in spine surgery require the surgeon

to insert screws in vertebrae to immobilize some parts
of the spine with metallic rods, e.g., for scoliosis cor-
rection. The drilling trajectory is chosen to pass via a
narrow anatomical part called the pedicle. Misplacing the
pedicle screws can induce many complications due to the
proximity of critical neural or vascular elements [1].

The main difficulty associated to the manual free-hand
procedure is that the precise location of the tool is not
directly visible. To assist surgeons, X-ray imaging sys-
tems have been coupled to marker-based optical tracking
devices to provide a real-time visual estimation of the tool
position in Virtual or Augmented Reality. Recently, spine
surgery robots have been introduced to these technologies
to position autonomously a drill guide on top of the
patient. However, these robots do not perform the drilling
themselves.

To better understand what is happening at the tool
tip, SpineGuard, a medical device company, designs tools
embedding local bio-electrical conductivity sensing thanks
to a bipolar sensor pulsing current flow at the tip of
their instruments [2], [3]. The measured signal varies
with the bone density and allows discriminating between
cortical bone (dense), cancellous bone (spongious), and
soft tissues (blood, muscles, etc).

With the idea to provide additional on-line safety check
for robotized spine surgery, we proposed a new concept
showcasing a robotic arm using a tool equipped with
conductivity sensing in [4]. The present paper describes a
more thorough experimental investigation of the concept.
It discloses a set of 104 experimental drillings performed
on ex-vivo lamb vertebrae, where 100% of the drillings
were autonomously stopped at the interface between the
bone and the spinal canal thanks to bio-electrical conduc-
tivity measurements.

MATERIALS AND METHODS
The mechatronic setup consisted of an LBR 7 Med

redundant robotic manipulator from KUKA, a custom-
made power drill, and a threaded drill bit embedding a
conductivity sensor, prototyped by SpineGuard.

All the experiments were conducted on fresh lamb
lumbar vertebrae acquired at the butcher shop. The ex-vivo
pieces, once at room temperature, were fixed in a clamping
vice, which was placed inside a transparent box. The
container was filled with a saline solution to reproduce

Fig. 1: Experimental setup.

the conductivity of the cerebrospinal fluid (CSF), usually
present in the vertebral canal during real surgeries. A
camera was positioned right outside the box to record the
interior of the spinal canal and look for potential bone
breaches. The overall setup is shown in Fig. 1.

An entry point was made manually in the spinous
process for each trial. Then the tool was hand-guided to
the entry point, and oriented towards the spinal canal.
Next, the robot was controlled to keep the orientation
fixed and apply a constant force of 10N, while drilling
with the threaded instrument with a 1mm pitch. The power
drill was controlled at a fixed rotation speed of 30 rpm,
leading to almost a constant insertion speed (see Fig. 2c)
of 0.5mm/s., thanks to the threads on the instrument.

A preliminary experiment, performed on 100 contin-
uous drillings of lamb spinous processes, allowed for
gathering electrical conductivity signals corresponding to
bone breaches. Then, the collected data was used to
develop and tune a bone breach detection algorithm to stop
the robot for all drillings in a ±2mm zone from the border
between the bone and the vertebral canal. Such breaches
would correspond to grades A and B of the Gertzbein-
Robbins classification of pedicle screw misplacement [5].

The resulting Algorithm 1 uses the conductivity 𝜎 and
the depth 𝑧 measurements to create a security flag 𝐴𝑙𝑒𝑟𝑡
enabling to stop the system. Parameters 𝜎max and 𝛼 are
used to create an adaptable threshold on the conductivity
signal. At the same time, Δ𝜎 and Δ𝑧 are used to monitor
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Algorithm 1 Bone breach detection, called for each new
conductivity measurement; Initially 𝐴𝑙𝑒𝑟𝑡 = false, 𝜎𝑟 = 0
and Σ, 𝑍 are empty lists. Blue values are the parameters
tuned from calibrating experiments

Input: 𝜎𝑘 , conductivity signal in mV
Input: 𝑧𝑘 , depth insertion in the bone in mm
Output: 𝐴𝑙𝑒𝑟𝑡, flag used to stop the drilling
Σ← [Σ 𝜎𝑘], 𝑍 ← [𝑍 𝑧𝑘] ⊲ Constructing lists
if 𝑧𝑘 < 5 then

𝐴𝑙𝑒𝑟𝑡 ← false
if 𝑧𝑘 < 3 then 𝑗 ← 𝑘
else 𝜎𝑟 ← (𝑘− 𝑗−1)𝜎𝑟+𝜎𝑘

𝑘− 𝑗 end if
else

𝐴1 ← 𝜎𝑘 > min(500, 2.4 𝜎𝑟 )
𝑚 ← argmin

𝑖∈{1· · ·𝑘}
|𝑍 (𝑖) − (𝑧𝑘 − 2) |

𝑛← argmin
𝑖∈{𝑚· · ·𝑘}

Σ(𝑖)

𝐴2 ←
((

max
𝑖∈{𝑛· · ·𝑘}

Σ(𝑖)
)
− Σ(𝑛)

)
> 230 mV

𝐴𝑙𝑒𝑟𝑡 ← 𝐴𝑙𝑒𝑟𝑡 | |𝐴1 | |𝐴2
end if

the conductivity increases over a few millimeters.
All parameters have been tuned to post-operatively

trigger a stop for the data of the preliminary experiments,
±2mm around the interface between cortical bone and the
vertebral canal.

Then, a second experiment, comprising 104 new verte-
brae, was performed with the previously defined automatic
bone breach detection algorithm and parameters, with
the intent to stop the threaded drill bit right around the
interface between the cortical bone and the spinal canal.

The final position of the tool relatively to the bone/canal
interface was then evaluated for each trial by using the
synchronized data (robot displacement and videos) ac-
quired during the experiment. To do so, we measured, in
post-processing, the number of millimeters of robot dis-
placement after seeing bone movement on camera. False
positives (stops happening before reaching the interface)
were assessed thanks to post-operative CT scans.

RESULTS
The presented robotic system successfully drilled all

the 104 lamb lumbar vertebrae autonomously without
breaching outside of the bone.

For each drilling, a surgeon verified via palpation with
a ball-tip feeler that the instrument did not fully breach
outside the bone. Moreover, the recorded video feed from
the webcam allowed to visually verify that the instrument
did not pass the vertebral wall (see Fig. 2b).

Also, a post-experiment CT scans analysis confirmed
that all drillings were stopped within less than 2mm from
the canal (0% false positive). A few vertebrae were passed
through a micro-CT scan to better visualize the resulting
hole drilled in the spinous processes (see Fig. 2a).

The post-processing of the synchronized robot logs and
webcam videos permitted to estimate the amount of bone

(a) Micro-CT scan

(b) Webcam view

(c) Measured depth

Fig. 2: Results on one autonomously drilled vertebra.

pushed inside the vertebral canal. The mean displacement
inside the canal was 0.65mm, with a standard deviation
of 0.4mm.

CONCLUSION AND DISCUSSION
A total of 204 vertebrae were drilled with the same

robotic setup. The 100 first tests were unstopped drillings,
used to collect data on bone breaches. The last 104
drillings were automatically stopped at the bone interface
thanks to a detection algorithm.

The CT scans and the recorded videos showed that the
detection happens when the cortical bone starts to crack,
i.e., before the hole is thoroughly drilled. The videos of
the preliminary experiment also allowed to visualize the
bone deformation (bump) happening in the vertebral canal
before bone perforation.

The trajectory used in this experiment was perpen-
dicular to the spinal canal. Even in this worst-case sce-
nario, all the drillings were graded A or B with the
Gertzbein-Robbins classification, which is clinically ac-
ceptable. Nonetheless, future work will need to validate
the algorithm on actual pedicle trajectories.
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INTRODUCTION
In recent years, robots embedding joint torque sensors

and impedance control have been industrialized and com-
mercialized, aiming to deploy safe human-robot collab-
oration applications. Among them, the Kuka LBR Med
benefits from all the certifications to ease its integration in
medical applications. The embedded torque sensors open
the opportunity to implement force control [1], a feature
that is missing in most existing surgical robots. Yet, it
is crucial for safety in a context where uncertainties and
disturbances, such as tissue deformations or physiological
movements, challenge robot stability at contact.

Impedance control preserves the robot’s stability in
the presence of uncertainties when the robot contacts
its environment [2]. However, within this framework,
explicitly controlling interaction forces applied by a robot
to its environment is impossible when the environment
position and stiffness are unknown. In this framework,
force-regulation or tracking can be achieved using inner-
outer loop control schemes [3], [4].

Installing a force/torque sensor on an end-effector to
implement explicit force control brings two drawbacks:
i) non-collocated modes that challenge stability [5]; ii)
from the perspective of a translation to clinical application,
adding costly and fragile equipment to a medical system
is of high cost and risk.

In this paper, we experimentally investigate the pos-
sibility of finely controlling the forces applied by the
robot to the environment based on KUKA’s built-in joint
impedance controller. We first use an external force/torque
sensor to provide the feedback signal, leading to poor
performance due to non-collocated dynamics. We then
introduce a pseudo-force feedback approach using joint
position sensors that significantly improves force response
rapidity and robustness.

MATERIALS AND METHODS
We consider a robot equipped with an inner joint

impedance controller. The dynamic relationship between
the external joint torque vector 𝝉𝑒 and the joint position
vector q of an impedance-controlled robotic arm is:

𝑀𝑑 ¥q = 𝐾𝑑 (q𝑟 − q) + 𝐵𝑑 ( ¤q𝑟 − ¤q) − 𝝉𝑒 , (1)

where 𝑀𝑑 , 𝐵𝑑 , 𝐾𝑑 , and q𝑟 represent the desired mass,
damping, stiffness matrices, and the reference joint po-
sition vector. Typically, diagonal constant matrices are
used for 𝐾𝑑 , 𝐵𝑑 , and 𝑀𝑑 , leading to independent linear
dynamic equations.

Fig. 1: Setup used for the 1-DoF experiment.

In a first step, we study a one-joint problem and use
plain lowercase letters to symbolize scalars:

𝑚𝑑 ¥𝑞 = 𝑘𝑑 (𝑞𝑟 − 𝑞) + 𝑏𝑑 ( ¤𝑞𝑟 − ¤𝑞) − 𝜏𝑒 . (2)

Regulating the torque to its desired value 𝜏𝑑 requires
adjusting 𝑞𝑟 in real-time by means of an outer torque loop.
Two different outer loops are considered. The first one uses
classical explicit torque regulation ([3], Fig. 2a):

¤𝑞𝑟 = _(𝜏𝑑 − 𝜏𝑒) , (3)

where _ is a proportional gain and 𝜏𝑒 is the measured at
the end-effector level using the installed force sensor. The
second one exploits a pseudo-torque signal 𝜏𝑒 = 𝑘𝑑 (𝑞𝑟−𝑞)
as the feedback signal (Fig. 2b):

¤𝑞𝑟 = _[𝜏𝑑 − 𝑘𝑑 (𝑞𝑟 − 𝑞)] . (4)

Note that according to Eq. (2), the pseudo-torque signal
corresponds to the real external torque at the equilibrium,
i.e.: if ¥𝑞 = ¤𝑞 = ¤𝑞𝑟 = 0, then 𝜏𝑒 = 𝜏𝑒 = 𝑘𝑑 (𝑞𝑟 − 𝑞).

In a second step, we expand the 1-DoF case to a multi-
DoF problem for force regulation. The control law is then:

¤q𝑟 = 𝐽†Λ[𝐹𝑑 − (𝐽†)𝑇𝐾𝑑 (q𝑟 − q)] , (5)

where 𝐹𝑑 is the desired force/torque (wrench) vector; 𝐽†
denotes the Moore-Penrose inverse of the Jacobian matrix
𝐽; And, Λ is a diagonal matrix whose elements denote
the proportional gains Λ = 𝑑𝑖𝑎𝑔(_1, ..., _6). Gain _𝑖 is set
to zero for directions where the force is not controlled,
leaving it free for conventional trajectory control, similar
to hybrid position/force control.

Experiments, 1-DoF and 7-DoF, were conducted using
the KUKA LBR 7 Med robotic arm running its built-in
joint impedance controller. For the 1-DoF experiment, the
second joint of the KUKA arm (Fig. 1) was controlled.
The other joints were servoed to their initial position. An
ATI Mini40 force and torque (F/T) sensor was placed at
the interface between the robot and the environment to
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(a) classical scheme with measured force feedback (b) proposed scheme with pseudo-force feedback

(c) step response – using the classical scheme (d) step response – using the proposed scheme
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Fig. 2: The 1-DoF experiment – control schemes and results. Comparison between the control schemes.

provide 𝜏𝑒 by projection about the robot’s second joint
axis. In practice, for safety, a velocity saturation ¤𝑞max
was added to Eq. (3). This had the experimental effect
of inducing limit cycles when stability conditions were
not met [6]. The desired torque was set to 𝜏𝑑 = −8.0 Nm.
Tuning the controller consisted of experimentally selecting
_ = 0.01 rad/s/Nm and ¤𝑞max = 0.05 rad/s to ensure stability
in various experimental conditions with the pseudo-force
feedback. The same tuning was kept for a fair comparison
with the external sensor force feedback.

For the 7-DoF experiment, all joints of the KUKA arm
were controlled using the pseudo-force feedback control
scheme. The F/T sensor was placed at the interface
between the robot and the environment only for evaluation.
Similar to the 1-DoF experiment, an operational space
velocity saturation ¤𝑥max = 0.02 m/s was added. The
desired force was −20.0 N along the vertical axis to
contact a hard horizontal plane (see Fig. 1). The gains _𝑖
were all set to zero but for _3 = 0.03 m/s/N, corresponding
to the vertical force component.

RESULTS AND DISCUSSION
Figure 2 shows the results obtained during the 1-DoF

experiment, when the robot started in the free-space and
contacted the environment, using the external (left) or
pseudo (right) joint torque signal. Although the gains are
identical, the external sensory approach leads to instability
(Fig. 2c), whereas the pseudo-torque feedback method
leads to a stable and precise response and, compared to
literature with this robot arm, relatively fast (Fig. 2d). The
servoed signal 𝜏𝑒 smoothly converged towards the desired
value within approximately 200 ms. Meanwhile, the real
torque 𝜏𝑒 experienced a peak at the impact that was not
fed back through the outer loop, thus not destabilizing
the system. Observed robustness arises from the fact
that the feedback signal 𝜏𝑒 excludes the high-frequency
components. Yet, it does not involve any low-pass filtering,

that would add poles within the closed-loop bandwidth
and induce stability issues.

Figure 3 shows the results of the 7-DoF experiment.
Similar to the 1-DoF experiment, we observed a stable
behavior. The servoed signal (pseudo-force, blue) was
smooth and converged toward the desired force value
rapidly. The observed slope, before reaching the desired
value, corresponds to the speed saturation that was set.

0 0.2 0.4 0.6 0.8 1
Time(s)

-30

-20

-10

0

F
or

ce
 (

N
)

fe

fd

~fe

Fig. 3: The 7-DoF experiment – results.
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INTRODUCTION

Ureteroscopy is the gold standard procedure for treatment and
diagnosis of upper urinary tract diseases such as carcinoma,
urinary strictures and urolithiasis. As a minimally invasive pro-
cedure, it implies accessing the organs through natural orifices,
avoiding incisions. This is translated in lower risk of infections
and shorter recovery time for the patient. However, performing
this procedure is a non trivial task and mastering it requires
an extensive training. Current challenges related to navigation
with traditional instruments inside narrow luminal organs, such
as the ureter, could turn into a complex task due to the limited
intuitiveness in controlling the endoscope movements, the poor
visual feedback, and the absence of any type of guidance or
assistance in current endoscopic systems [1].

In this context, Robotic Flexible Ureteroscopy offers an op-
portunity to overcome the mentioned challenges, ease the burden
of the clinicians [2] and offer better treatments for patients.
The advantages these robotic systems present include the use of
ergonomic Human Machine Interfaces (HMI) which allow more
precise and smoother movement of the tools and the possibility
to operate the robot remotely at a safer distance from radiation.
Nevertheless, since the first reported clinical use of a robotic
ureteroscope, the Sensei Magellan system (Hansen Medical, no
longer commercially available) [3], few other robotic platforms
have been tested for urological applications. This lack of robotic
platforms might be related to the fact that the platforms did not
provide sufficient assistance to the operator (e.g. haptic feedback,
augmented reality, autonomous navigation etc.), limiting the
benefit of their use compared to manual approaches.

In this regard, this abstract introduces the design and a
preliminary user test of an innovative robotic platform able
to address the current challenges related to navigation in the
urinary tract. The proposed platform presents different levels of
assistance up to a level 4 of autonomy as defined in [4]. The
platform is endowed with (1) a multi-steerable active catheter,
(2) multi-level autonomy HMI, (3) a real-time tracking system
of the position and shape of the device inside the lumen and
(4) real-time suggestions and aids for the user (e.g., current
procedure phase, position of the center of the lumen etc.). The
mechanical properties of the active robotic catheter together
with its autonomous and semi-autonomous abilities could help
clinicians to prevent perforations and get support during the
procedure. Furthermore, thanks to the integrated tracking system,
real-time position of the ureteroscope together with its shape
mapped inside the patient’s anatomy may become available

*These authors contributed equally to this work.
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Fig. 1. a) General perspective of the Multi-level-assistance robotic platform
including: 1) ureter phantom, presenting the visual conditions of a real ureter;
2) built robotic endoscope; 3) emergency stop button; 4) EM tracking system;
5) FBG interrogator and 6) Human Machine Interface. b) The Graphical User
Interface: 1) current phase of the procedure; 2) processed output (center of the
ureter) of our visual-servoing module and 3) 3D shape of the endoscope relative
to the phantom expressed in the EM coordinate frame.

during the whole surgery, reducing the need of using X-rays
for localization.

MATERIALS AND METHODS
The proposed system is depicted in Fig. 1 and it includes three

main components:
• A Visual-Servoing Module, based on [5], comprises of (1) a

cable-driven soft robotic endoscope which has a backbone
and a helical structure with two bending directions. The
steerable segment of the soft robotic endoscope is 70 mm
long which is similar to the one in a ureteroscope; (2)
an actuation robotic platform to bend in two directions
and to insert the robotic endoscope. In total, there are 3
Degrees of Freedom (DoFs) in Visual-Servoing Module.
An Arduino Mega is used to implement two PID controllers
and served as a bridge between high-level commands and
all the actuators. A deep learning based visual servoing
high-level controller is used to autonomously segment the
lumen from the camera images, as presented in [6], and
compute the center of the ureter. The information from
the detected center is used to calculate the error and bring
the tip of the endoscope towards the detected center point.
The average center detection time is 0.15 s deployed on a
NVIDIA GeForce RTX 2080 GPU.
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• A Shape Sensing Module adapted from [7] includes a
multicore Fiber Bragg Grating (FBG) (FBGS, Belgium)
embedded in the center channel to sense the 3D shape of the
soft robotic endoscope. Two electromagnetic (EM) tracking
sensors (NDI, Canada) are attached to the tip and to the
base of the robotic scope to localize the 3D reconstructed
shape in the EM coordinate frame.

• A multi-level autonomy HMI including a Graphical User
Interface (GUI) implemented in Unity3D (Unity Technolo-
gies, USA) and a joystick for controlling the endoscope
in manual or assisted control. The GUI shows: (1) the
endoscopic image recorded by the camera, (2) the position
and deformation of the endoscope registered in the pre-
operative and intra-operative images, (3) the image with
higher level features such as computed by the visual-
servoing module, and (4) the phase of the procedure.

Three different levels of assistance are considered.
1) Manual - The operator can see the endoscopic images

recorded by the camera and the information regarding the
position and deformation of the endoscope obtained from
the shape sensing module. The operator controls the 3
DoFs of the endoscope through a joystick or keyboard.

2) Visual assistance - In addition to the information men-
tioned in the manual scenario, information regarding the
detected center of the lumen and the clinical phase is
shown to the operator. In this operation mode, the nav-
igation is still performed by the user using the joystick.

3) Autonomous - During fully automated intraluminal navi-
gation the visual servoing module drives the endoscope
inside the lumen, i.e. the 2 DoF bending and the in-
sertion/retraction, following the center-line detected with
the computer vision module. The clinician supervises the
procedure and in case there is any concern they can halt
immediately the process by pressing the emergency stop
button and recover full manual control over the endoscope.
In case that the computer vision system fails on detecting
the lumen, the robot halts its movement.

As initial test, we performed a set of experiments to compare
the capabilities of the system, at its different levels of assistance,
for the task of centering the endoscope in the lumen. In the
Manual and Visual scenarios, all participants (10 individuals
with non-medical background) allowed to get familiar with the
system for five minutes before performing the task in order to
exclude possible learning effects. The participants had only one
chance and were asked to command the robot, i.e. moving only
2 DoFs for the bending of the tip, to reach the center of the
lumen. In the Autonomous scenario, the robot performs the task
with aid of the visual servoing high-level controller.

The performance metrics taken into account are the settling
time and the Steady State Error (SSE). The settling time is
defined as the first time the endoscope reaches a distance within
less than 20% of the initial distance with respect to the center
of the lumen. A condition was herein that this position is
maintained for more than one second. The SSE is defined as
the distance between the theoretical detected lumen center and
the center of the camera frame when the participants or the robot
finished the tasks.

RESULTS AND CONCLUSION
A total of 10 participants were considered for the Manual

and Visual feedback experiments. In the case of the Autonomous
scenario 10 experiments were carried out. Boxplots comparing
the results between each of the modalities are shown in Fig. 2.

Fig. 2. Boxplots comparison of a) Steady State Error (pixels) and b) settling
time between the three modalities of the system (manual control, visual feedback,
autonomous) tested for the lumen centering task. The median value for each setting
is presented on the top.

In the case of settling time the median values obtained were
39.47, 30.37 and 15.36 s for the manual, visual, and autonomous
respectively and the values obtained for SSE were 21.35, 30.37
and 15.36 pixels, respectively. In both metrics the autonomous
modality obtains the best performance. In the case of settling
time, it reaches the goal in half the time that is required with
visual feedback and is 2.5 faster than the case when there is
no feedback. For the case of SSE metric the values obtained
with visual feedback and manual mode are twice and four times
higher than the autonomous mode.

In conclusion, robotic platforms represent an opportunity to
reduce the risks and difficulties related to ureteroscopy. This
work successfully demonstrated autonomous navigation in a sim-
ple ureter phantom using a robotic catheter endowed with real-
time shape sensing and localization and a multi-level autonomy
HMI. Future work includes (1) integrate FBG/EM trackers data
to improve the autonomous control algorithm of the catheter
(now used only for shape-sensing and localization), (2) test the
whole system in a multi-organ phantom, (3) conduct user tests
with expert clinicians.
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INTRODUCTION 

Laryngeal squamous cell carcinoma (LSCC) is 

inflammatory cancer that develops in the mucosa layer of 

the throat. To limit the morbidity caused by surgery or 

non-surgical therapies, early diagnosis of malignant 

tumors is essential. LSCCs are diagnosed in the clinic 

using an adjustable trans-nasal laryngoscopy. Currently, 

due to the limited resolution of the analogic optical 

images generated by standard fiber optic trans-nasal 

laryngoscopy, it has intrinsic disadvantages.  

High-definition video laryngoscopy has 

recently supplanted traditional fiber optic endoscopy. 

High-definition optical laryngoscopy has progressively 

overtaken traditional fiber optic imaging since it 

identifies laryngeal malignancies with much more 

precision [1].  However, with white light (WL) 

laryngoscopy, the morphology of larynx mucosal 

abnormalities can be very non-specific, and preoperative 

clinical examination is sometimes not reliable in 

evaluating the real eventual malignancy. Narrow Band 

Imaging (NBI) is a well-established optical technology 

that uses narrow spectrum filters to improve imaging 

methods' for effective tissues detection in the larynx.  

 Unfortunately, there are several limits to the 

current use of this technique, particularly in low 

experience clinics: analyzing NBI endothelial patterns is 

difficult and largely relies on the clinician's competence, 

and therefore as a result, it requires excessive time. 

Computer-aided detection (CAD) uses deep learning 

(DL) approaches including Convolutional Neural 

Networks (CNNs) for automatic human diseases 

assessments. Furthermore, CAD driven by strong and 

reliable CNNs has the potential to significantly boost the 

effect of video laryngoscopy along with NBI in massive 

LSCC monitoring in the future. 

 The previous study has attempted the prospect 

of using CAD to identify laryngeal disease, and the 

findings have been impressive [2], [3]. These studies, on 

the other hand, only focused on how well-trained CNNs 

could identify the presence of a specific lesion on static 

images. Instead, ongoing research in this domain must 

focus on applying CAD to real-time video detection. The 

prospect of using DL for real-time detection and 

localization of LSCC on video laryngoscopy WL and 

NBI recordings is investigated in this work. We 

emphasized assessing the accuracy of our trained DL 

model and its applicability for real-time video 

endoscopic LSCC automated detection. The proposed 

Ensemble You-Only-Look-Once (YOLO) framework 

[4], which is built on V5s and V5m with pre-trained 

weights and TTA, performs best for identifying LSCC. A 

few sample LSCC images and enhanced images are 

shown in figure 1. 

 
 Figure. 1. WL and NBI LSCC images (A) WL; (B) NBI 

MATERIALS AND METHODS 

Glenn Jocher first introduced YOLOv5 on GitHub in the 

year 2020 [4]. YOLO utilizes a compact neural network 

architecture to provide bounding boxes and class labels 

in real-time. YOLO surpassed other state-of-the-art 

algorithms, including such faster-RCNN detection. Yolo 

v5 has several advanced improvements that seek to 

improve test time and activation functionality. Among 

the most remarkable extra features is the distinctive 

mosaic data augmentation.  

YOLOv5 trained model is suitable for real-time 

detection on low computation devices [5] since it has 

faster inference and fewer model weight files than 

YOLOv4. The three major blocks that make up the 

YOLO deep learning architecture are the backbone, neck, 

and head as shown in figure 2.  

Yolov5s, Yolov5m, Yolov5l, and Yolov5x are 

the four various model versions of the YOLOv5 that 

range in size from tiny to extra-large. The tiny model 

comprises 7.3 million while the extra-large model 

comprises 87.7 million parameters. We incorporated two 

new Yolo variations, Yolov5s6 and Yolov5m6, in our 

research and findings. The COCO pre-trained weights are 

used in the Yolov5 model for transfer learning features.  
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Figure. 2. YOLOv5 framework architecture for detection. 

 

EXPERIMENTAL ANALYSIS 

The IRCCS Ospedale Policlinico San Martino 

organizational ethics board accepted the retrospective 

analysis (CER Liguria: 230/2019), which adhered to the 

Helsinki Declaration requirements. This prospective 

study included patients at IRCSS Ospedale Policlinico 

San Martino in Genoa, Italy, between 2014 and 2019. 

More than 200 patients are considered in this study, with 

the majority of those being male, with 196 of those being 

male, and 23 of those being female, with an average age 

of 67.9 years. 

 The current state-of-the-art YOLOv5 algorithm 

was tested on 657 images (318 WL, 306 NBI, and 33 

unlabeled). The model trained with 543 images, of which 

256 were WLs, 254 were NBIs, and 33 were left 

unlabeled. Validation contained 54 images, 32 of which 

were in WL and 22 in NBI. Finally, 60 randomized 

images were evaluated, 30 from the WL and 30 from the 

NBI. Data augmentation approaches contrast limited 

adaptive histogram equalization (CLAHE), and test time 

augmentation (TTA) applied to increase model 

performance. Six pre-operative laryngoscopy videos 

were chosen to evaluate the trained DL model's real-time 

LSCC detection performance. 

RESULTS 

The tiny YOLOv5 model variant performed very well on 

a limited and diverse dataset. Due to the small dataset, 

the model with the highest parameter started overfitting 

(unnecessary prediction) early in training and validation. 

The Ensemble approach presented here diagnosed 

laryngeal carcinoma in images that were similar to the 

ground truth. The Ensemble YOLO model shown here 

has the best performance for diagnosing LSCC, with a 

positive predictive value (PPV) of 0.664, a sensitivity of 

0.621, a mean average precision (mAP) of 0.627, and a 

true positive (TP) of 82 percent. Figure 3 illustrates both 

the actual video frames and the model's expected frames.  

In  video-stream testing phase, we focused only 

on inference times for the real-time approach excluding 

image acquisition time. The Ensemble model (Yolo5s 

plus Yolo5m – TTA) was chosen as the principal 

framework in this context due to its superior 

performance. The model detected LSCC with an average 

latency per frame of 0.023 to 0.034 milliseconds.  

 

Figure. 3. Proposed Ensemble YOLOv5 prediction results on 

static images. 

CONCLUSION AND DISCUSSION 

This is the first study using YOLO to detect LSCC cancer 

as per our knowledge. This DL model can detect LSCC 

in images and videos in real-time. Our ensemble model 

had the best LSCC detection precision, recall, and 

mAP@.5. Technically, we emphasize the importance of 

using data augmentation to help the model learn how to 

identify LSCCs. Finally, overlapping bounding boxes 

improved the inference strength of the original YOLO 

model. 

 We found the Ensemble YOLOv5 model 

suitable to be used in WL and NBI video laryngoscopies. 

This model is ideal for real-time processing owing to its 

efficiency and accuracy. Even with the small training set 

used in this study, the availability of NBI images to feed 

the algorithm was critical to the reported detection 

performances. If this model will be trained on a larger 

image dataset, we expect it to perform faster and more 

effectively in the future.   
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INTRODUCTION
Scoliosis is a three-dimensional deformation of the

spine [1]. The treatment consists in correcting the de-
formity using a rigid construct until the fusion of the
spine vertebrae. The construct is formed mainly by screws
inserted into the vertebrae’s pedicles and two rods (see
Fig. 1a).

The first step for pedicle screw placement is preparation
using a pedicle probe. Pedicles are small and deformed
in patients having scoliosis, while being close to vital
structures such as the spinal cord. If pedicle preparation,
followed by screw placement, is not optimally performed,
it may cause severe complications for the patient. For
instance, medial and lateral cortical perforation may cause
vascular and neurological damage (see Fig. 1b). The con-
ventional free-hand non-assisted pedicle screw placement
can lead to a misplacement rate for idiopathic scoliosis
surgery as high as 14% [2].

(a) (b)

Fig. 1: (a) Sagittal X-ray of the spine after extended spinal
fusion for a scoliosis patient. (b) Axial scan views of a
misplaced pedicle screw [3].

Navigation systems for guiding pedicle preparation are
based on irradiating imaging techniques. To reduce irra-

diation, the SpineGuard company develops surgical in-
struments for pedicle preparation, such as the PediGuard,
which measures the tissue’s electrical conductivity in
contact with the instrument’s tip and sends auditory and
visual feedback to the surgeon [4]. Using the PediGuard
instrument for spine surgery has been proven to reduce
the need for fluoroscopy use by 30% while maintaining a
97.5% accuracy [5].

Several studies proved that measuring electrical conduc-
tivity and sending audio feedback to the surgeon increases
accuracy for optimal pedicle screw placement [4], [6].
However, no study has directly investigated electrical con-
ductivity values and compared them to clinical evaluation.
The present study aims to develop an automatic bone
breach detection system, which could be integrated into
surgical robotics for automated pedicle preparation.

MATERIALS AND METHODS
Data are collected during surgeries performed on id-

iopathic scoliosis patients, all operated at the same uni-
versity hospital. Pedicle preparation is done using the
Pediguard (instrument developed by SpineGuard) that
measures the electrical conductivity signal 𝐷𝑆𝐺 (𝑡) at its
tip at 5 Hz. Values are recorded through a wireless appli-
cation on a laptop. The surgeries are video recorded with
a 10 mm diameter endoscope with zero-degree angulation
linked to an arthroscopy column (Fig. 2). All the data are
recorded on the same laptop for time synchronization.

For each pedicle, the surgeon evaluates the prepared
trajectory as usual, i.e. through palpation with a probe
or a ball-tip "feeler". The palpated trajectory is defined
as "optimal" if it feels like a bone tunnel without any
cortical perforation; defined as "breached" if there is a
bone perforation, and modification of the aiming direction
is needed. Trajectories that do not meet these above
definitions, such as voluntary "in-out-in" trajectories, have
been classified as "undetermined" and eliminated from the
statistical analysis.

Then, for data post-processing, at each time sample,
the insertion depth of the PediGuard’s tip inside the
vertebra is calculated using image processing techniques
thanks to the recorded videos using the endoscope. The
electrical conductivity values are only taken into account
when measured after 10 mm of depth. Before 10 mm,
the data might not be relevant because of the blood in
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Fig. 2: Setup used in the operating room: A: endoscope, B: Pediguard, C: Arthroscopy column, D: Laptop recording
synchronously video and electrical conductivity data.

the pre-drilled entrypoint. Finally, the electrical conduc-
tivity difference Δ𝐷𝑆𝐺1𝑠𝑒𝑐 is computed between values
separated by 1-second time interval, i.e., Δ𝐷𝑆𝐺1𝑠𝑒𝑐 (𝑡) =
𝐷𝑆𝐺𝑡 − 𝐷𝑆𝐺𝑡−1.

RESULTS & DISCUSSION
A total of 457 pedicle preparations are recorded

on 21 patients. 266 are classified as "optimal", 40 as
"breached", and 151 as "undetermined". The maximum
value Δ𝐷𝑆𝐺𝑚𝑎𝑥 of the signal Δ𝐷𝑆𝐺1𝑠𝑒𝑐 (𝑡) is computed
for each pedicle. The median of Δ𝐷𝑆𝐺𝑚𝑎𝑥 across all the
data are 159 mV for the "optimal" group, and 579.5 mV
for the "breached" group (p<0.05) (see Fig. 3).

Fig. 3: Distribution of Δ𝐷𝑆𝐺𝑚𝑎𝑥 according to the quality
of the pedicle aiming.

No pedicle preparation in the "breached" group has a
maximum value less than 321 mV (Δ𝐷𝑆𝐺𝑚𝑎𝑥 < 321 mV),
and only 7.9% in the "optimal" group have Δ𝐷𝑆𝐺𝑚𝑎𝑥

> 321 mV. Therefore, this shows that Δ𝐷𝑆𝐺𝑚𝑎𝑥 can
be used to detect if a pedicle preparation is optimal in

92.1% of cases. The presence of intraspinal hemangioma,
a benign vascular tumor, or remnants of growth plates in
the vertebral body might explain the lack of detection in
7.9% of cases; the incidence of intraspinal hemangioma
is between 10-27% [7].

This study demonstrated that an increase in the elec-
trical conductivity measurement of more than 321 mV
in a 1-second time interval evokes the possibility of a
breach with a 92.1% chance. The 321 mV corresponds
to the minimum value of Δ𝐷𝑆𝐺𝑚𝑎𝑥 of the "breached"
group. Therefore, this information could be valuable to
inform surgeons that a change in the direction of the
trajectory is necessary before inserting the screw. Also, the
obtained results show that a breach detection model could
be used to increase the safety of robot-assisted pedicle
screw placement preparation [8].

ACKNOWLEDGMENTS
This research has received funding from the CAMI

labex and ANRT through the CIFRE program.

REFERENCES
[1] W. Skalli et al., “Quantification of three-dimensional vertebral

rotations in scoliosis: what are the true values?” Spine, vol. 20,
no. 5, pp. 546–553, 1995.

[2] K. Abul-Kasim et al., “The rate of screw misplacement in segmental
pedicle screw fixation in adolescent idiopathic scoliosis,” Acta
Orthop., vol. 82, no. 1, pp. 50–55, feb 2011.

[3] T. Orief et al., “Accuracy of percutaneous pedicle screw insertion
in spinal fixation of traumatic thoracic and lumbar spine fractures,”
Surgical neurology international, 2018.

[4] C. Bolger et al., “A preliminary study of reliability of impedance
measurement to detect iatrogenic initial pedicle perforation (in the
porcine model),” Eur. Spine J., 2006.

[5] C. D. Chaput, K. George, A. F. Samdani, J. I. Williams, J. Gaughan,
and R. R. Betz, “Reduction in radiation (fluoroscopy) while main-
taining safe placement of pedicle screws during lumbar spine
fusion,” Spine, vol. 37, no. 21, pp. E1305–E1309, 2012.

[6] M. Allaoui et al., “Contribution of Dynamic Surgical Guidance to
the Accurate Placement of Pedicle Screws in Deformity Surgery: A
Retrospective Case Series,” World Neurosurg., 2018.

[7] M. Barzin et al., “Incidence of Vertebral Hemangioma on Spinal
Magnetic Resonance Imaging in Northern Iran,” Pakistan J. Biol.
Sci., 2009.

[8] J. D. Silva et al., “Robot-assisted spine surgery guided by conduc-
tivity sensing: first preclinical experiments demonstrate X-ray free
breach detection,” in Hamlyn Symp. Med. Robot. The Hamlyn
Centre, Faculty of Engineering, Imperial College London, 2019.

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 95



Augmented Reality and Robotic Navigation System for Spinal Surgery

Matteo Boles1, Junling Fu1, Elisa Iovene1, Francesco Costa2, Giancarlo Ferrigno1, Elena De Momi1

1Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy

2Department of Neurosurgery, Fondazione Istituto Nazionale Neurologico, “C. Besta”, Milan, Italy

INTRODUCTION
Robotic spinal surgery requires the surgeon to drill a

hole inside the vertebral body of the patient at the level
of the pedicle and insert a screw afterward while ensuring
to avoid causing damage to surrounding vulnerable struc-
tures, such as nerve roots, spinal cord, and blood vessels.
To achieve this, computer-assisted navigation (CAN) and
robotic guided techniques are frequently adopted to assist
surgeons. The CAN-based method allows surgeons to see
the driller’s position on a screen in real-time, however,
requires great hand-eye coordination. In the latter one,
robots are usually adopted as tool guidance systems. Oper-
ations such as the drilling, are still manually performed by
surgeons to control the driller position accurately and stop
timely, which may introduce lesions into sensitive tissues.

To tackle the above-mentioned problems, augmented
reality (AR) can cooperate with the robotics prototype
to achieve real-time navigation and control of the path
and depth during surgical operations. Besides,different
techniques have been investigated in AR applications to
align the virtual model with the real one [1]. Manual-
based approaches showed the difficulty in assessing rela-
tive depths of physical and virtual models while external
tracking system-based method could inevitably introduce
errors when computing the transform matrix from the
markers to its view origin.

Besides, automatic drilling also has been explored and
various kinds of sensors utilized to acquire signals such
as force [2], sound [3] and vibration [4]. However,these
signals can be easily affected by external noise. Also, the
sensor-based technique utilizes the threshold algorithms,
which may result in erroneous transition detection with
inappropriate threshold values.

MATERIALS AND METHODS
In this paper, an AR-based robotic navigation system

for spinal surgery was developed. CT dataset of a ver-
tebral column (UWSpineCT dataset, Imperial College of
London) was segmented and processed using 3D Slicer.
The real vertebral model is made of Polylactic Acid
(PLA) material using a 3D printer, with 20-micron layer
resolution ultra-smooth surfaces.

As shown in Fig.1, the real model is positioned inside
a sponge and covered with another one to resemble skin,
fat and muscle of human body. Fiducial-based registration
approach was adopted to match the virtual model with the

Fig. 1: Prototype of the developed robotic system.

real one using four 3D printed fiducial markers which
are glued on the sponge. As shown in Fig.2, fiducials
were located in the real world using a 3D printed pen
equipped with a QR code to track the position of its tip
and automatically matched with their virtual counterparts
by computing the translation and rotation matrix through
the Singular Value Decomposition (SVD) algorithm.

The robotic prototype shown in Fig. 1 is composed of
three parts, namely the mechanical structure, the motor
drilling system, and the control system. The mechanical
structure has 6 Degree-of-Freedom and is composed of
three sliders and a ball joint. The motor drilling system is
driven by a DC motor with the probe mounted to represent
the automatic drilling process. Besides, an Arduino board
is adopted as the control system and connected to the wire-
less network using an ESP-8266 Wi-Fi module. The NDI
Polaris Vicra (Northern Digital, Inc, Ontario, Canada) is
used to track the position of the mounted probe.

In Fig. 2, the pre-planned path of drilling the obtained
vertebra model was manually defined in 3D Slicer and
then it is integrated into the hologram of the vertebra
for visualization. Fig. 3 illustrates the communication
diagram of the whole system. The position of the probewas
integrated on the CT scans using the Plus server in real-
time and displayed on a virtual screen in Fig. 2. Command
will be sent from MATLAB to ROS (Robot Operating
System) to stop the movement of the probe when it reaches
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Fig. 2: Experimental setup of the proposed AR-based
robotic spinal surgery navigation system.

the pre-planned position.
To verify the feasibility of the proposed navigation

system, nine subjects were invited to perform the real
and virtual model alignment task and position the robotic
prototype in line with the entry point of the 3D printed
vertebra inside the sponge looking to the virtual path
displayed on the hologram and to the virtual screen in
the AR application.

In this paper, performance metrics are chosen to quanti-
tatively and qualitatively evaluate the experimental results,
including both the objective and subjective metrics:

• The Fiducial Registration Error (FRE), used to de-
fine the distance between the hologram and the
real model, which calculates the Root-Mean-Square
distance between two fiducials point clouds.

• The target and angular deviation, between the desired
path and the actual path, computed in the frontal,
sagittal, and transversal planes.

• Questionnaire-based subjective method to evaluate
the usability of the designed system.

RESULTS AND DISCUSSION
The experiment of aligning the real model and the

virtual one is first implemented. Experimental results
showed an alignment error between the real and virtual
model of 4.07 ± 0.48 mm reaching a maximum of 4.85
mm and starting from a minimum of 3.37 mm.

The system positioning accuracy was then evaluated
through the angular and target deviation defined in the
three planes. As shown in TABLE.I, experimental results
showed the target deviation errors of 1.34 ± 0.59 mm in
the frontal plane while 0.91 ± 0.40 mm and 0.88 ± 0.65
mm in the transversal and sagittal plane, respectively.
Considering the thickness of the cortical bone at which
the driller during spinal surgery should stop has a 2 mm
thickness, the error results were acceptable. In terms of
angular deviation we got instead in the frontal, transversal
and sagittal plane, errors 1.31◦ ± 0.87◦, 0.93◦ ± 1.55◦,
6.38◦ ± 6.10◦ respectively.

Furthermore, subjective experimental results demon-
strated that all the subjects involved in the experiment
found the system easy to use without too much information
to be known. Also, the questionnaire results illustrate that
most of the participants preferred to rely on the virtual

Fig. 3: Diagram of the communication of the proposed
navigation system.

TABLE I: Experimental results of the target deviation and
angular deviation errors.

Frontal Transversal Sagittal

1.34 0.91 0.88Target deviation (mm)
(±0.59) (±0.40) (±0.65)

1.31 0.93 6.38Angular deviation (◦)
(±0.87) (±1.55) (±6.10)

display to position the probe and not on the path displayed
on the hologram of the vertebra probably considering the
difficulty in assessing the depth of the virtual model.

CONCLUSIONS
In this paper, an AR-based robotic navigation sys-

tem is developed for spinal surgery. Experimental results
demonstrated the possibility of integrating the AR-based
instrumentation into operating rooms for spinal surgery
navigation. Participants can position correctly the robotic
prototype by looking at the virtual display shown in the
AR application and at the path seen on the hologram.
Also, in all the trials the automatic drilling can activate
and stop successfully which suggests a possible solution
that could be used to automatize processes such as the
drilling one in spine surgery.
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Surgical image generation for binary tool segmentation
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INTRODUCTION
Introducing artificial data to train deep learning models

is common practice among fields that have limited access
to information resources such as the medical and surgical
fields [1] due to legal and ethical constraints. To this end,
image-to-image translation (I2I [2]) models demonstrated
high suitability for this task. I2I is the process of translat-
ing data between different domains: this includes a variety
of tasks such as image colorization or simulation to real
image adaptation. In this abstract we focus on the latter
task to produce synthetic frames starting from a robot
simulation environment to train surgical tool segmentation
models. Simulation environments are indeed one of the
preferred choices as a starting domain for the application
of I2I thanks to their ability in producing automatic
labels [3]. Differently from previous works [1], [4], [5],
our model include attention modules [6] to support feature
translation between domains and it is able to optimally
blend the simulation tools on the surgical background,
thus increasing their realistic appearance. Validation of
the proposed method was conducted through evaluation
of segmentation models trained on synthetic images pro-
duced using state-of-the-art methods and the proposed
one. Here we show that performances close to training on
real data can be achieved with the proposed method on
3 different datasets, with improvements from 2% to 10%
intersection-over-union (IoU) over other image generation
pipelines.

MATERIALS AND METHODS
A. Model architecture

Based on recently developed attention mechanisms, we
built our I2I architecture similar to [6], where segmenta-
tion models are trained along each generator to help the
model focus on domain-specific features. The architecture
is composed of two generators and two attention modules
generate synthetic frames from simulation and real images
and two discriminators for to distinguish between real and
fake frames. Details of our architecture’s components are
presented as follows:
1) Generators: Each generator was built following

Cycle-GAN architecture[2]: a 7x7 convolution layer fol-
lowed by two down-sampling layers with kernel size K=3
and stride S=2 reduce the image dimensions and increase
the number of channels. Then a series of 8 residual
blocks followed by two up-sampling convolutional layers
further processes the image and return it with its original
dimension.

UCL MICCAI '17 RARP45

Fig. 1: Sample images from the proposed method gener-
ated starting from MICCAI ’17, UCL and RARP45.

2) Attention modules: Our attention modules were built
using a U-net architecture with a ResNet34 backbone
pre-trained on Imagenet. We choose a very deep model
compared to the original formulation [6] since pre-trained
backbones have shown to improve results in segmentation
procedures compared to basic U-net structure, thus we
believe better image understanding can derive in the same
way for the proposed attention module.
3) Discriminators: Our discriminators follow the

PatchGAN [7] paradigm: the model is fed with one frame
and returns a 30x30 gray-scale matrix where each pixel
evaluates a 70x70 patch of the input frame to be either fake
or real. This method has been proved to allow a lighter
computation without any important drop in performances.

B. Domain sets
Domain sets refer to the source and target images used

to train our I2I model. Since we aim to transform labelled
simulation frames to have realistic stylish appearance, we
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TABLE I: Segmentation performances for binary segmen-
tation over UCL, MICCAI ’17 and RARP45 test sets.
Results are shown in the following form: Best IoU (%) /
Average IoU (%) over three different training procedures
for each model.

UCL MICCAI ’17 RARP45
No I2I 39.52 / 36.25 5.23 / 3.41 0.0 / 0.0

CoSegGAN 84.04 / 75.76 89.33 / 85.21 54.46 / 52.81

Ozawa et al. 76.37 / 72.94 91.83 / 90.34 33.81 / 30.69

Colleoni et al. 85.67 / 84.85 91.15 / 90.16 -

Proposed 86.33 / 85.26 93.32 / 93.02 64.39 / 57.72
Real 85.93 / 84.06 96.09 / 96.01 -

use a simulation and a real datasets as source and target
domains respectively:
1) Real domain set: Differently from [1], we built our

real domain set considering frames from ex-vivo and in-
vivo surgical procedures without further pre-processing.
The employed datasets are MICCAI ’17 from Endovis
Challenge [8], UCL from [9] and RARP45 an in-vivo
surgical dataset from real prostatectomies.
2) Simulation domain set: We composed simulation

domain frames by blending simulated surgical tools from
a CoppeliaSim1 [10] da Vinci robot onto real surgical
background images obtained from real surgical videos.
We considered only EndoWrist® Large Needle Drivers
(LNDs) due to the limited availability of 3D simulation
surgical tool models in CoppeliaSim environment, though
we believe that the procedure could be extended to other
instrument shapes.

C. Experiments
In order to evaluate our model against state-of-the-art

image generation works, we trained our and other three
models from literature to produce images using MICCAI
’17, UCL and RARP45 datasets as real domain set. Then,
for each model, we generated a segmentation dataset
(using segmentation labels from simulation) and trained
a Unet on that. Finally, we compared their segmentation
performances, with the assumption that higher quality
images lead to better segmentation. Each model was
trained three times on each dataset and results will be
provided in terms of mean and best IoU over the thee
models. We considered [4], [1] and [5] for our comparison.

RESULTS
Some qualitative results from the proposed workflow

can be appreciated in Fig.1 while segmentation perfor-
mances for all the considered methods are shown in
Table I. The segmentation models trained on images
produced with our workflow outperformed all models
trained on frames generated using other pipelines, with the
exception for Real, i.e. the model trained on real images
from the datasets. The best difference was achieved on

1https://www.coppeliarobotics.com/

RARP45, with an improvement of 10% best IoU and on
MICCAI ’17, with an improvement of 3% mean IoU.

CONCLUSIONS AND DISCUSSION
Fig.1 shows that our I2I model was able to translate fea-

tures on simulation tools and blend them on the provided
surgical background. Moreover, the luminance conditions
on the tools vary according to the background, thus
producing more realistic images. Moving to Table I and
following experiments carried out in [1], the obtained re-
sults suggest that, with the proposed method, it is possible
to produce surgical images that better mirror real surgical
frames. This affects the segmentation performances of the
model that uses these frames during training, leading to
enhanced segmentation capabilities. For future research
in this field, the potential of surgical simulators could
be exploited to produce different sources of labels, e.g
surgical tool pose or depth maps. This is not possible
in other methods [5] that are limited to surgical image
segmentation. I2I paradigm could also be translated over
surgeon’s training environments to improve simulation
realism. However, in this scenario, further effort should
be put to ensure spatial and temporal consistency of the
anatomical structures and the surgical tools.
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INTRODUCTION
Automatic recognition of surgical activity could play

a key role in providing advanced support in computer-
assisted interventions and autonomous functionalities in
robot-assisted surgeries. There are different types of ac-
tivities that are defined based on the level of detail,
that could describe a surgical procedure. Katic et al.
[1] decomposed a surgical workflow into different types
of activities: whole procedure, phases, stages, steps, and
actions. Phase recognition is a very active research area in
the medical computer vision community and has received
significant attention [2]. Recently, there has been a surge
of research works focusing specifically on step recognition
[3], [4]. This trend can be related to the fact that steps
define a surgical workflow at a more fine-grained level
than phases which could be beneficial in developing more
precise and advanced monitoring and support systems.

Most recent works in step recognition from endoscopic
surgical videos [5], [4] proposed a deep learning model
consisting of a ResNet-50 backbone to learn spatial in-
formation and a Temporal Convolutional Network (TCN)
to learn the temporal information from spatial features
extracted from the backbone. Ramesh et al. [4] trained the
spatial and temporal model separately for the recognition
of surgical phases and steps from videos of Laparoscopic
Roux-en-Y gastric bypass (LRYGB) procedures.

In this work, inspired by the work described in [4],
we propose an end-to-end Spatio-temporal model com-
bining ResNet-50 and TCN models for step recognition in
cataract procedures. We evaluate the proposed model for
step recognition on the public benchmark CATARACTS
containing 50 videos of cataract surgeries.

MATERIALS AND METHODS
The proposed Spatio-temporal model consists of a

ResNet-50 [6] backbone for learning spatial features and a
single-stage TCN (SS-TCN) for temporal modeling from
the spatial features. The model is shown in Fig. 1.

We use SS-TCN that is a single-stage variant of Multi-
Stage TCN (MS-TCN) [5] to learn the spatial coherence
across video frames. The choice of SS-TCN was motivated
by the work of [4] where MS-TCN did not provide a
significant improvement over SS-TCN for both the step
and phase recognition. The SS-TCN, following the same
design of MS-TCN, contains neither pooling layers nor
fully connected layers and is constructed with only tempo-
ral convolutional layers, specifically dilated residual layers
performing dilated convolutions. With the aim of online
activity segmentation, we perform at each layer causal

Fig. 1. The architecture of the proposed spatio-temporal model
consisting of a ResNet-50 backbone followed by a TCN for temporal
modeling.

convolutions that depend only on the current frame and
𝑛 previous frames. The proposed model is trained end-to-
end as opposed to two stage approach proposed in [4].

The model takes an input video consisting of 𝑇 frames
𝑥1:𝑇 . The ResNet-50 maps 224 × 224 × 3 RGB images
to a feature space of size 𝑁 𝑓 = 2048. The frame-wise
features, collected over time, are input to the TCN model
that predicts �̂�𝑠1:𝑇 where �̂�𝑠𝑡 is the class label for the
current timestamp 𝑡, 𝑡 ∈ [1, 𝑇]. Step recognition being a
multi-class classification problem that exhibits imbalance
in the class distribution, softmax activation and class-
weighted cross-entropy loss are utilized. The class weights
are calculated using the median frequency balancing [7].

Training: The ResNet-50 model is initialized with
ImageNet pre-trained weights. The end-to-end ResNet-
50 + SS-TCN model is then trained for the task of
step recognition. Since TCN models capture the temporal
information in an online setup, features of past frames of
a video are cached using a feature buffer which is reset at
the end of the video. The model in all the experiments is
trained for 50 epochs with a learning rate of 1e-5 and
a batch size of 64. The models were implemented in
PyTorch.

Dataset: We evaluate our method on the public
CATARACTS dataset proposed in [8]. The dataset con-
sists of 50 videos of cataract surgery with step annotations.
In total, there are 19 steps defined for this procedure1. The
list of steps is presented in Tab. I. We split the 50 videos
into 25, 5, and 20 videos for training, validation, and test
sets, respectively. The images of resolution 1920 × 1080
are extracted at 1 fps from the videos. The frames are
resized to 224 × 224 and the training set is augmented
with horizontal flip, saturation, and rotation.

Evaluation metrics: We follow the same evaluation
metrics used in other related publications [5], [4], where

1https://www.synapse.org/#!Synapse:syn21680292/wiki/601563
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TABLE I
The list of steps defined for cataract procedures.

ID Step ID Step

0 Idle 10 Irrigation/Aspiration
1 Toric Marking 11 Preparing Implant
2 Implant Ejection 12 Manual Aspiration
3 Incision 13 Implantation
4 Viscodilatation 14 Positioning
5 Capsulorhexis 15 OVD Aspiration
6 Hydrodissetion 16 Suturing
7 Nucleus Breaking 17 Sealing Control
8 Phacoemulsification 18 Wound Hydratation
9 Vitrectomy

accuracy (ACC), precision (PR), recall(RE), and F1 score
(F1) are used to effectively compare the results.

DISCUSSION AND CONCLUSION
Although we use a fully annotated dataset for evaluat-

ing our proposed method, obtaining large-scale annotated
dataset is very expensive and time-consuming. Especially
in the medical domain as it requires annotators with expert
domain-specific knowledge. To show the effectiveness of
our method at different labeled data regimes, we test our
Spatio-temporal model on the CATARACTS dataset with
varying number of labeled videos (3, 6, 12, 18, and 25
videos) in the training set. The results on the test set
are reported in Tab. II. We notice that with 100% of
labeled dataset the model achieves 79.23% and 56.61% in
accuracy and F1, respectively. In Fig. 2 we see that having
more labeled data is beneficial for the model to recognize
steps. Particularly with just six annotated videos, we
achieve an accuracy of 64.48% which is 15% below
100% of the dataset annotated. Furthermore, with just
50% of the labels, we can achieve a result that is just 5-6%
below 100% labeled dataset in all the evaluation metrics.
The results show that the proposed Spatio-temporal model
works well in recognizing activities from cataract surgical
videos that are different compared to LRYGB procedures.

Although the proposed method shows good perfor-
mance at different percentages of available labeled data,
there’s plenty of room for improvement in the lower data
regime. Creating huge labeled datasets, which is crucial
for training deep learning models, is very expensive and
time-consuming. Hence, we would like to tackle this
problem, as part of future work, by developing semi-/self-
supervised learning methods that work with few labeled
videos.
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TABLE II
Spatio-temporal model performance with varying amount of

labeled videos. Accuracy (ACC), precision (PR), recall (RE), and
F1-score (F1) (%) are reported.

# Videos ACC PR RE F1

3 (12%) 43.55 35.9 23.63 24.67
6 (25%) 64.48 47.87 37.19 40.08

12 (50%) 74.62 59.19 47.49 50.6
18 (75%) 78.94 63.62 54.86 57.22

25 (100%) 79.23 67.33 54.39 56.61

Fig. 2. Model evaluation on varying amount of step annotated videos.
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INTRODUCTION
The development of advanced robotic-assisted plat-

forms for laparoscopic surgery necessarily requires ad-
vanced sensing techniques to provide data during surgery.
In current laparoscopic interventions, accurate and pre-
cise measurements can be found primarily in complete
robotic platforms that integrate actuated arms control and
endoscopic camera positioning. These platforms, however,
are expensive in both acquisition costs and maintenance
and, as such, still represent a minority in all laparoscopy
operations performed globally. In this paper, we present
a solution to push forward the improved care offered
by surgical robotics to laparoscopy with a smart trocar
concept that allows accurate tracking of the instruments in
minimally-invasive scenarios, like the one presented in [1].

Previous prototypes of a smart trocar either rely on only
an accelerometer to integrate the orientation [2], with the
latter operating only during the trocar placement and not
for measurements during the procedure, or adopt a fixed-
star navigation solution with a camera mounted on the
trocar and targets scattered around the operating room [3].

The proposed smart trocar consists of two potentiome-
ters with an RGB camera for estimating the locale position
and orientation of the tip of the laparoscopic instruments.
They have been developed under the EU funded SARAS
project (https://saras-project.eu/) and have been
tested on a scenario involving robot-driven instruments
and realistic manikins to simulate a radical nephrectomy
procedure. This solution requires no modifications to com-
mercial trocars and needs minimal calibrations to perform
accurately, thus offering a quick integration into traditional
laparoscopic procedures.

MATERIALS AND METHODS
The design of the smart trocar, shown in Figure 1,

integrates a sensorized platform with a standard set of
laparoscopic trocars and tools. The tool diameter con-
sidered in this design is 5 mm, but it can be easily
adapted to any trocar size. It is built around a gimbal
and bridge component that transfers the pivoting motion
of the trocar cannula holder to two potentiometers. A
PCB is attached to the side of the cannula to host a
microcontroller and a camera. This mounting position

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No.
779813 (SARAS).

(a) Smart trocar (b) Full assembly

Fig. 1. CAD of the smart trocar final prototype. a) a close view of the
base plate, b) a complete view with the tool and trocar mounted on it.

allows the camera to track a set of markers painted on
a disk on the laparoscopic instrument which does not
interfere with the trocar’s motion. The camera is used to
measure the rotation and insertion of the tool. Assuming
a mounting position in contact with the patient epidermis,
the effective Remote Center of Motion (RCM) is 9 mm
above. This is not a major concern as the maximum
radial deformation at the insertion point is ≈ 10 mm given
the maximum longitudinal and transversal rotation of the
gimbal and bridge of 40° and 64°, respectively. For this
reason, the forces acting on the epidermis are negligible.

The microcontroller (an ESP32-CAM model) handles
the raw measurements from the potentiometers via the
PCB and synchronizes them with the camera frame ac-
quisition. It communicates this information through WiFi
via the rosserial protocol to a computer that estimates
the pose of the laparoscopic tool tip (Tool Center Point,
TCP). The proposed method computes the position and the
orientation of the TCP 𝑇𝑟

𝑒 with respect to the mechanical
RCM placed in the middle of the smart trocar base plate.

Let 𝑇𝑤
𝑟 be the transformation of the RCM with respect

to a global reference frame; in our use-case we attached
the smart trocar to a rigid stand as shown in Figure 2
and the transformation is estimated by using the algorithm
proposed in [4]. 𝑇𝑟

𝑒 can be written as

𝑇𝑟
𝑒 =

[
𝑅 𝑡
0 1

]
(1)
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Fig. 2. The 3D printed final prototype of the smart trocar used
during the experimental validation; the trocars are mounted on a pair
of adjustable arms to adapt to the anatomy; the diameter of the smart-
trocar cannula is 5 mm.

where 𝑅 = 𝑅(𝜓)𝑅(\)𝑅(𝜙) and 𝑡 =
[
0 0 𝑡𝑧

]
. The po-

sition of the TCP 𝑇𝑤
𝑒 with respect to the global reference

frame is then
𝑇𝑤
𝑒 = 𝑇𝑤

𝑟 𝑇
𝑟
𝑒 . (2)

The Euler angles 𝜓 and \ are the values of the two
potentiometers mounted on the board. We aligned the
rotation axis of the sensors with a set of Cartesian axis
having their 𝑧-axes aligned with the instrument shaft. To
measure both the distance and the 𝜙 rotation we used a
set of eight ArUcO markers [5] placed on a support disk
anchored to the laparoscopic tool. The support has been
designed in such a way to always have at least one of these
markers visible by the camera mounted on the support.
The distance is estimated by assuming that the camera
and the disk remain parallel to each other which allows to
average the depth of all identified ArUcO markers. Finally,
the rotation 𝜙 is estimated by mapping each markers
unique id to its position on the face-plate by design to
zero the rotation and, then, measure the variation of the 𝑥
and 𝑦 axis angles relative to the camera. The ArUcO-based
insertion measurements were found to be more precise and
reliable than the early design that used a time of flight
(ToF) sensor, with the added bonus of being able to also
estimate the tool’s rotation along its main axis.

EXPERIMENTS
The proposed smart trocar prototype, as shown in

Figure 2, has been tested on an experimental setup with
a Franka Emika® Panda arm acting as the ground truth
position reference and a Storz® grasper laparoscopic tool
as the surgeon instrument. We registered the robot and
the smart trocar prototype in a shared reference frame [4]
to later compare their measurements. We performed a se-
quence of motion towards a fixed position in an anatomical
manikin having an impedance similar to the human skin
at the RCM. Then, we recorded the target positions using
the robot kinematics and we compared them with the
measured positions of the laparoscopic TCP over multiple
tests. Figure 3 shows the prototype performing in a set of
three puncturing. The contacts happen around 10 s, 18 s
and 26 s and the maximum error is about 4 mm. Such error
is deemed sufficient for the intended application. It is the
authors’ opinion that such error can be mostly attributed
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Fig. 3. The experimental validation of the proposed prototype: the solid
line shows the laparoscopic tool position and the dashed line shows the
reference position of the landmarks.

to the mechanical play related to the materials used in the
prototype.

CONCLUSIONS AND DISCUSSION
The design of the smart trocar proved to be simple yet

efficient in providing a reliable pose estimation despite
the low cost construction of the prototype version. The
validation on the radical nephrectomy procedure carried
out with expert surgeons were successful with no reported
obstruction on the nominal procedure flow. The position
measurements as shown in the experiments appear to
be stable and sufficiently precise for controlling robotic
manipulators in semi-autonomous surgery. The adopted
mounting solution of the smart trocar is stable and reliable,
but the design ergonomics should be further improved.
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INTRODUCTION  

Pelvic floor (PF) is a muscle-fascial system that inferiorly 

closes the pelvis. It is really important in woman's life 

because it guarantees the correct positioning of the pelvic 

organs, the urines and feces continence and evacuation, 

and it allows sexual activity and childbirth [1]. 

Dysfunctions of PF involve important physical and 

psychological consequences in the daily life of a woman 

and significant expenses for their treatment.  

Vaginal delivery represents one of the main risk factor 

for the onset of PF disorders. Pelvic muscles in pregnant 

women show very different elastic characteristics if 

compared with non-pregnant women’s muscles. 

Moreover, they undergo considerable stretching during 

the passage of the foetus, that often results in a medium 

and/or long-term tissues injury. Thus, dedicated studies 

could both pave the way to a better comprehension of this 

phenomena, and improve prevention clinical techniques.  

Physical simulators deepen the study of the factors 

characterizing a clinical event and allow the doctor to 

have a physical support, which is essential for technique 

refinement and knowledge transfer in the clinical 

practice. Currently, there are only birth simulators 

available on the market, in which the PF is merely an 

additional element recreated at a low-fidelity level in 

terms of anatomical and physiological features. In 

addition, commercial simulators equipped with PF are 

limited in number and entirely passive, hence they don’t 

provide any feedback to the clinician. 

In this framework, the aim of this paper is to realize a 

sensorized physical simulator of maternal PF that can be 

used both as a teaching and/or a training system for 

gynaecologists and obstetrics. The innovative features of 

the proposed simulator are the following: i) high-fidelity 

reconstruction of the maternal PF anatomy; ii) use of soft 

materials able to replicate the biomechanical properties 

of human tissues; iii) active evaluation of the muscle 

deformation induced by the foetal head (FH) passage 

through the PF structure. 

MATERIALS AND METHODS  

By combining anatomical data with literature 

information, a 3D model of the maternal PF was 

reconstructed and utilized for muscle fabrication through 

moulding technique (Figure 1). Ecoflex 0030 silicone 

(Smooth-On, PA, USA) was used for reproducing the 

biomechanical behaviour of the PF muscles. Its elastic 

modulus of E=0.068 MPa is close to the pregnant woman 

muscles modulus, i.e., E=0.06 MPa [2, 3]. The tendons 

structures of the PF are then replicated for guaranteeing 

the right positioning of the muscle component (Figure 1 

for details). Finally, a female pelvis model with standard 

dimensions was found for bones replication [4]. 

In order to record the muscle deformation during the 

delivery simulation, elastic sensors capable to follow the 

elongation of the PF are required. Commercial sensors 

were discarded because commonly they are rigid and thus 

they do not meet the silicone elasticity and integration 

requirements. As an alternative, a specific elastic 

conductive fabric (Med-tex P130, Shieldex, Germany) 

was investigated for fabricating a custom home-made 

resistive sensor. Conductive fabric has been already 

demonstrated as a valid solution for soft applications [5], 

allowing to evaluate the elongation by changing its 

resistance. Finally, signal acquisition is ensured by firm 

electrical connections made of conductive wires properly 

hand-stitched on the fabric mesh. Electronic components 

for signal conditioning and acquisition are required. To 

evaluate the sensors resistance-elongation relation, 

several tensile tests were performed by using the Instron 

5965 machine (Instron, USA). Rectangular shaped textile 

samples were stretched from 0% to 100% - in order to 

cover the entire human tissue stretch range - for 5 cycles 

at 400 mm/min speed. Test was repeated 3 times. 

The components were integrated and the final device was 

validated both on the bench and with clinicians. In order 

to calibrate the simulator and to collect data that can be 

used for comparing the obtained system with literature, a 

descent of the FH through the PF was simulated by using 

the Instron machine. A vertical descent of 100 mm at 150 

mm/min speed was repeated 3 times; applied forces and 

sensor elongation were acquired from the Instron and 

simulator electronics, respectively. As in the literature, it 

was used a rigid FH approximating a 10 cm sphere made 

of PETG realized by means of the FDM technique. 

Ultimately, to complete the preliminary system 

validation phase, a pre-clinical testing protocol was 

realized by involving expert gynaecologists at Azienda 

Ospedaliero Universitaria Pisana. The tests were 

performed by combining our simulator with a commonly 

used FH simulator. The descent of the FH through the PF 

was reproduced. Five different positions that the FH 

might assume during the delivery were simulated by the 

clinicians. Tests were repeated 3 times. 

RESULTS  

The integrated system is reported in Figure 1. Pelvis 

bones were made of PETG through a FDM printer (i3 

MK3S+, Prusa Research, Czech Republic). 
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Three different sensors were made in order to cover the 

muscular areas mostly stressed during childbirth: 2 

rectangles of 51mmx6.5mm in size were positioned 

between the pubic symphysis and the perineal body; 1 

smaller rectangle of 44mmx6.5mm was integrated near 

the perineal body (Figure 1-bottom view). Sensors signal 

was acquired using a Wheatstone bridge. The electronic 

circuit was powered and managed through the Arduino 

Mega 2560 board (Arduino, Italy). 

 
Figure 1. Complete simulator. On the left upper view and on 

the right bottom view. 

By combining the elongation applied by the Instron 

machine on the sensors samples with their resistance 

values, the sensor calibration curve was obtained (Figure 

2). As shown in the figure, the resistance increases 

linearly up to 60% of the elongation and decreases 

linearly from 60% to 100%. An equal and opposite 

behaviour was observed during the shortening phase of 

the sensor. The acquired signal proved to be accurate, 

showing an identical behaviour over time and during 

multiples tests.  

 
Figure 2. Resistance VS Force for sensor force calibration 

curves obtained moving forward (on the left) and moving 

backward (on the right). 

 

The resistive sensors, made with Med-tex P130 fabric, 

were integrated on the PF structure using Ecoflex 0010 

silicone. Muscles and bones were glued together through 

a thin inextensible fabric replicating PF tendons.  

The forces acquired during the test simulating FH descent 

with the Instron machine (i.e., 45N as peak force) are 

similar to those found in literature (i.e., 30 N as peak 

force) [6]. Moreover, the sensor resistance-elongation 

curve acquired with the final system, show the same 

behaviour obtained for the single sensor, demonstrating 

the system robustness and the analysis repeatability. 

From the tests with three expert gynaecologists (Figure 

3), it was possible to evaluate which one of the 

reproduced foetal positions (e.g., occiput anterior (OA) 

position - baby facing towards mamma’s spine; occiput 

posterior (OP) position – baby’s head is entering face-up) 

causes greater muscle distension, resulting in an 

increased possibility of PF injury and/or the onset of PF 

dysfunction in the postpartum period.  

The obtained results (Figure 3A) confirmed that all the 

integrated sensors worked correctly during the tests. In 

addition, sensors provided different output signals, 

showing different peak values (point of instantaneous 

main contact between FH and PF) at different descent 

instants. 

 
Figure 3. Test conducted with expert gynaecologist. A) 

Elongation VS Time curves extracted from the integrated 

sensors; (B) Testing set-up.  

CONCLUSION AND DISCUSSION  

The described active high-fidelity simulator showed 

good potentialities and it could be considered a valid 

system for PF damages evaluation. Clinicians confirmed 

the simulator is anatomically and physiologically faithful 

to human anatomy. Resistive textile sensors allowed to 

monitor the elongation of the PF tissues during the FH 

descent. The device, therefore, represents a promising 

tool that can be included both in training courses for 

experienced and non-experienced clinicians, and in 

gynaecological education lessons. Future efforts will be 

dedicated to a structured test protocol with at least 40 

trainees (expert and residents). Additionally, a simple 

solution for fixing the system to the gynecological table 

during the test protocol will be identified for avoiding to 

affect the experimental data with drawbacks due to a not-

stable manual held. 
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INTRODUCTION
Laparoscopic surgery brings a lot of advantages for the

patient [1] counterbalanced by an increased difficulty for
the surgeon, caused in part by limitations in perception [2].
On the one hand, the visual perception is degraded (loss
of depth perception, reduced field of view, etc.), on the
other hand, due, among other, to the friction of the trocar,
the stiffness of the abdominal wall and the lever effect,
the haptic perception of forces is also highly degraded
[3]. Since both haptic and visual sensory modalities are
degraded, the overall force perception, resulting in the
integration of both, is insufficient [4]. It leads to tissue
damages [5], application of excessive force [6] and poor
palpation precision (in terms of hardness and size discrim-
ination for instance) [7].

Therefore, it appears of great interest to restitute perti-
nent information to the surgeon, to improve the perception
of forces. We propose here to use sensory augmentation to
assist the degraded natural haptic feedback with a sensory
substitution approach to restitute the effort measured at the
tool-tip. This feedback has to respect several constraints.
First, it should not interfere with the rest of the operating
room. We therefore opt for the tactile modality so as
not to increase the load on the already highly solicited
auditory and visual modalities [8]. In particular, a tactile
feedback based on tangential skin deformation – skin
stretch – appears as a suitable candidate; Indeed, it has
been suggested [9] that as it is the same sensory channel
as for the perception of an effort, it should then be intuitive
with no increase of the cognitive load. Finally, in order to
avoid disrupting the medical gesture, we decide to apply
the skin deformation feedback on the arm instead of the
fingertip, as usually done in teleoperation [10] or haptic
interaction with virtual environments [9].

To summarize, the present paper focuses on sensory
augmentation based on tangential skin deformation on
the arm to restitute the force applied at the end of the
instrument to the surgeon. The design of a first prototype
and a pilot study aiming at experimentally assessing the
validity of the proposed approach in a 1-Dof context,
focusing only on the axial force, are presented hereinafter.

MATERIALS AND METHODS
A. Prototype: Design & Control

We developed a skin-stretch wristband, shown in Fig. 1,
in order to evaluate the proposed feedback strategy. The
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Fig. 1. Skin-stretch wristband: (a) slider, (b) crank, (c) hook-and-loop
fasteners, (d) soft TPU pads, (e) tactor, (f) low-friction carriage,

(g) guide rail, (h) motor, (i) compression spring

device consists of a 1DoF mechanism based on the
Scotch-Yoke variant of the crank-slider, as this variant
is more reliable, decreases the dimensional requirements
[11] and presents less friction [12]. The element in contact
with the skin providing the friction-induced skin-stretch
is the blue 25mm diameter spherical convex tactor. It is
made out of high friction silicone to avoid slippage and it
is connected to the slider with a spring-based mechanism
to ensure the contact with the skin along the normal
direction. The slider, hence the tactor, features a stroke
of ±30mm from the center position. The wristband is
positioned and maintained on the arm using soft TPU
pads strapped together. All the control and instrumentation
signals are connected to a single board computer, running
a real-time controller. The latter is performing the position
control of the motor and acquiring the force measured by
a 6-axis F/T sensor.

The amount of skin stretch to be applied is determined
similarly to [9], [10] as follows:

x = rssf, (1)

where x [m] is the desired displacement of the tactor, rss
[m/N] is the skin stretch ratio and f [N] is the force to be
rendered. The desired displacement of the tactor is then
converted into a desired motor angle using the kinematic
model.

B. Protocol: Design & Experimental Setup

We performed an experimental pilot study in order to
evaluate our approach and compare it to a visual feedback
and no feedback, in a stiffness discrimination palpation
task, mimicking a laparoscopic surgery context. A total
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Fig. 2. Experimental setup of the pilot study
Left: (a) view of the scene, (b) force gauge, (c) emergency stop,

(d) opaque sheet, (e) wristband, (f) tool, (g) noise-canceling headphone
Right: (h) stiffness sample holder, (i) spherical palpation probe,

(j) stiffness samples, (k) F/T sensor, (l) camera, (m) fulcrum + trocar

of 5 subjects between the ages of 24 and 32 participated
in this study, which was performed in accordance with the
ethical principles provided by the declaration of Helsinki.

The experimental setup is presented in Fig. 2. The
participant is holding a palpation tool inserted in a medical
trocar, itself placed in a fulcrum. The end of the instrument
consists of a 8mm spherical probe, mounted on a 6
axis F/T sensor, allowing to measure the applied efforts.
However, only the force along the tool axis is considered
here. Three stiffness samples are placed in a sample
holder. The vision of the scene, blocked by an opaque
black sheet, is transferred on a screen.

The elementary task is a palpation task in which the
participant is presented with three stiffness samples where
one, the odd-one-out, is stiffer than the other two, the
references, which are identical. The samples are masked
on the screen when the tool-tip is in contact, so as not
to influence the perception. The subject is given 15 s to
identify the stiffest sample.

This elementary task (ET) is performed under three
experimental conditions: “natural” where there is no
additional feedback than the distorted natural haptic feed-
back, “visual” where a gauge whose filling is proportional
to the applied effort is displayed on the screen, “skin
stretch” where the proposed feedback is applied.

For each experimental condition, there is one experi-
mental block subdivided into two parts: a training part of
7 ET and a main part of 21 ET. The main part is composed
of three difficulty levels (easy, medium, hard), with 7
ET per level. An increase in difficulty is characterized
by a decrease in the difference in stiffness between the
reference and the odd-one-out.

RESULTS
The performance in term of stiffness discrimination

precision is evaluated using the success rate, that is, the
percentage of correct identification of the stiffest sample.
Fig 3 shows the success rate for all participants, for every
difficulty level under each experimental condition.

These preliminary results seems to indicate that the
participants are performing better with a feedback than
with no feedback. Furthermore, if the visual and skin-
stretch feedback appear to perform similarly for the easy
level, it seems that, as the difficulty increases, the skin-
stretch feedback is detaching from the visual feedback and
yields a better success rate.

40

60

80

100

Easy Medium Hard
Difficulty level

Su
ce

ss
ra

te

Feedback
modality

Natural

Visual

Skin
stretch

Fig. 3. Results in term of success rate for all participants

CONCLUSION AND DISCUSSION
This paper proposed a feedback modality based on

tangential skin-stretch on the arm in order to improve the
degraded perception of forces in laparoscopic surgery. The
accent was put on the design of a prototype and on a
pilot study that showed promising results, confirming the
interest of the presented approach.

A complete study is therefore required and will be
conducted in future work to confirm the emerging trend
from these preliminary results using statistical tests on
a larger population. The impact on the cognitive load
also needs to be addressed to verify the assumptions
established in introduction.
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INTRODUCTION
Classic laparoscopy is an ergonomic burden for both

assistants and surgeons. To ease this aspect, a robotic
endoscope holder that features a model-based weight
compensation was introduced in [1]. This feature allows
the user to place the camera at a desired position in a
comanipulation fashion. Once in place, the camera can be
released, and the robot will hold it steady.

However, endoscopes feature difficult-to-model ele-
ments. For instance, the optic cable shown in Fig. 1 is
a non-rigid element whose gravity model depends on the
pose of the endoscope. If this variability is not accounted
for, the user can no longer release the camera safely as it
will present a fall/rise.

In the literature several approaches have been proposed
to deal with variable payloads of robots [2], [3], [4].
However, they present drawbacks: reliance on additional
hardware and/or on predefined end-effector trajectories.

This article proposes an online method to detect distur-
bances in the robot gravity model. By using Neural Net-
work, the method can differentiate human manipulation
from fall/rises due to poor weight compensations. This is
a first step towards a complete approach that aims at an
online adaptation of the endoscope’s gravity model.

MATERIALS AND METHODS
A. Experiment

The overall setup used is the “Surgical Cockpit” [5].
This platform reproduces a realistic situation of robot-
assisted minimally invasive surgery. For the experiment,
a participant is asked to reproduce the target image
shown on the small screen by manipulating the endoscope
attached to the robotic arm (Fig. 1 on the left). The
endoscope video is displayed on the large screen. Once the
target image is reached, the endoscope can be released. A
total of 6 objects are placed inside a laparotrainer. Target
images are randomly drawn.

a) Robot actuation: The endoscope holder is
Achilles, characterized in [6]. This robot features a passive
gravity compensation of its links. For this experiment it
also features a model-based algorithm, proposed by [6], to
compensate endoscope weight. This algorithm consists in
mapping a Cartesian force F𝑔 at the robot’s end effector
(Point 𝑊 in Fig. 1) respecting (1).

F𝑔 = −𝑚(𝛽(I − z𝐼z𝑇𝐼 ) + z𝐼z𝑇𝐼 ))𝑔, 𝛽 =
𝐶𝐺

𝑇𝑊
(1)

Sp2

Sp1Cable

Fig. 1: Overall set-up. On the left is the general view, on
the top right a focus on the endoscope, on the bottom right
spatial configurations Sp1 and Sp2.

Where 𝐶𝐺 is the distance from the camera tip 𝐶 to its
center of mass 𝐺, 𝑇𝑊 the distance from the fulcrum point
𝑇 to the wrist 𝑊 , (using [6]), 𝑚 the mass of the endoscope
and z𝐼 a unit vector parallel to the endoscope’s axis.

b) Weight configurations: Four configurations - A,
B, C, and D - are set in which different values of
mass 𝑚 and percentages of optic cable hanging from the
endoscope are tested. They are presented in Table I.

Values 0.5 kg and 0.65 kg correspond to the correct
model mass to compensate for the endoscope alone and
with the entire cable’s length attached, respectively. Each
configuration has compensation errors which will result
in the endoscope either falling or rising after release.

c) Datasets: Two spatial configurations Sp. 1 and Sp.
2 (Fig 1, on the bottom right) were tested to evaluate how
sensible the algorithm is to changes in the robot-patient
configuration. A total of 200 releases in the configuration
Sp.1 are performed and used as training set. The testing
set comprises 60 releases for both spatial configurations
(Sp.1 and Sp.2). For every set, weights configurations were
randomly drawn before each release.

B. Detection Algorithm
In order to detect perturbations in the gravity model,

several algorithms have been tested and Neural Networks
have shown the best results. Furthermore, many features
were investigated for the input, and only the following are
kept, as they showed the best performance (Section -C):

• Position of 𝑊 w.r.t frame T - x ∈ R3𝑥1 (See Fig. 1).
• Velocity of 𝑊 w.r.t trocar frame T - v ∈ R3𝑥1

• Differentiation of joint torques - d𝝉 ∈ R3𝑥1
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A B C D
Mass [kg] 0.5 0.5 0.65 0.65
Cable (%) 100 50 50 0

TABLE I: Weight configurations. Values of model mass
𝑚 in (1) in first row, percentage of hanging optic cable in
second row.

Configuration Precision Recall Delay [ms]
Sp 1 98.1 93.6 81.3
Sp 2 82.3 86.1 134.6

TABLE II: Results for both spatial configurations. The last
column shows mean values.

During surgery, both the robot’s base and the patient can
move. For this reason, input features were calculated w.r.t
the trocar frame T to be robust to spatial changes.

It was found that the differentiated joint torques pre-
sented a different behavior between human manipulations
and poor compensations, as illustrated in Fig. 2.

As stated before, a Neural Network is used to detect
disturbances. Since data are temporal, Recurrent Neu-
ral Network (RNN), more specifically Long Short-Term
Memory Network (LSTM), were chosen [7]. Indeed RNNs
seem to be the most suitable choice because they are
capable of remembering previous decisions and are influ-
enced by what happened in the past. This is possible since
information is passed from timestep to timestep, thanks to
recurrent connections [8], [9].

C. Results
Input data were recorded at 20Hz, in order to detect

significant changes between human manipulation and poor
compensations. To obtain a fast behavior, the network is
composed of a single layer of LSTM cells of size 18,
followed by an output layer. To train it, data were cut into
25-second windows. Using the Adam algorithm [10], the
LSTM network is trained during 50 epochs with a learning
rate of 0.001. During the testing phase, probabilities are
computed for each sample, and states are propagated in
order to keep the temporal aspect of the network. This
method can therefore be used in an online fashion.

Three metrics were chosen to quantify results: 1) Preci-
sion, 2) Recall, 3) Delay of detection in milliseconds (See
“Delay” in Fig. 2). Both precision and recall are calculated
for each sample.

As shown in Table II, the proposed method is able
to correctly detect poor compensations, in experimental
condition. Furthermore, detection delay is relatively short,
compared to the average total duration of a fall or rise
(∼ 600 ms). Results for Sp2 are significantly lower than
for Sp1, but that was expected, since training data were
exclusively from Sp1.

To put results in perspective, it is important to compare
them with existing methods. Previous work aiming at
detecting such disturbances was presented in [11] with
mean detection delays of up to 1.5 s. Compared to this
work, the detection delay has been reduced by more than
90%, which is a considerable improvement. The method
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Fig. 2: The top plot shows the output of the model as
well as the ground truth. The two bottom graphs show
the chosen features.

from [11] was only tested in Sp1, so we cannot compare
results when the spatial configuration is changed.

CONCLUSIONS AND DISCUSSION
In this paper, a new approach to detect disturbances in

the gravity model is implemented. Using position, speed,
and joint torques differentiation as input, a Neural Network
can detect camera motions due to poor weight compen-
sations. When compared with another approach presented
in [11], this method showed better performances, reducing
the mean detection delay by ∼ 90%. Obtained results
are encouraging, and we propose to use this model that
differentiates human movements from poor weight com-
pensations to achieve an adaptive behavior. For example,
this model can be used to trigger a correction of the
gravity model when a poor compensation happens, e.g.,
updating the mass 𝑚 in (1).
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INTRODUCTION
Structural Intervention Cardiology (SIC) procedures

still present limitations (e.g. use of fluoroscopy with
consequent radiation exposure, lack of force or haptic
feedback, risk of embolisation or perforation) [1]. The
ARTERY proposes an autonomous robotic platform to
overcome these drawbacks.

MATERIALS AND METHODS
A. Real environment: actuating the ARTERY catheter

The MitraClip (MC) system is composed of two
catheters, the sheath catheter and the delivery catheter; the
latter is inserted in the first. Studying how the components
of the MC system are handled by the surgeon during
procedures [2] led to choose a motorize stabilizer for
actuation, as seen in Figure 1B. The sheath catheter has
two DOF, including bending and translational insertion
(Figure 1B.1) and the delivery catheter has three DOF,
which are two perpendicular in plane bending and one
translational movement (Figure 1B.2).

The two main elements for actuation are the following:
• Stepper motors (1.a, 2.b, 2.c) to rotate the pulleys

attached by the tendons, which guarantee a maximum
holding torque of 0.6 Nm;

• Linear actuators (1.b, 2.a) that carry the catheters and
perform a translation movement.

These components are designed in Solidworks and
printed in Polylactic acid (PLA) material via the S3 3D
printer (Ultimaker). This design was properly connected
to the MC system to obtain the first prototype of the
experimental setup. The first attempt to control the MC
is performed using an Arduino One, exploiting a joystick
(Figure 1B.7): different buttons actuate different motors.

B. Virtual environment
Starting from a Computed Tomography (CT) scan (di-

mension 512 × 512 × 347) provided by IRCCS Ospedale
San Raffaele, we reconstructed in Unity the anatomical
environment in which the agent (i. e. the catheter) moves.
In 3D Slicer, the original scan has been manually seg-
mented to obtain the anatomical structures of interest
(i. e. right and left atria and ventricles, inferior and
superior vena cava, femoral veins, pulmonary artery) and
subsequently smoothed, filtered with a gaussian filter. The
final result is shown in Figure 1A. The purpose of the
simulation environment is to allow pre- and intra-operative
path planning. To this end, we have created two different

environments: pre-operative, which is static, and intra-
operative, which is dynamic, as it simulates the pulsing
of the heart and the vessels. We implemented a manual
path planner controlled using a joystick. The surgeon can
thus design and visualize all the possible trajectories in
real time in the specif patient’s anatomy and select the
best one.

C. Bridging the real and virtual environments: Cosserat
rod theory

In order to have an accurate simulation of the physical
catheter in the virtual environment, it is paramount that
the virtual catheter behaves as the real one in terms of
geometry and kinematics. For this reason we have applied
Cosserat rod theory to represent the MC geometry [3].
Cosserat rod theory employs a robot-attached reference
frame composed by a matrix R (orientation) and a vector
p (position). The robot configuration is evaluated in a
fixed number of points, named nodes, placed along the
rod. Solving the system for the nodes allows to obtain a
reliable representation of the body. The frame is attached
to the nodes and its evolution along the body length s is
described by means of a system of differential equations:

¤𝑅(𝑠) = 𝑅(𝑠)�̂�(𝑠)
¤𝑝(𝑠) = 𝑅(𝑠)𝑣(𝑠) (1)

We solve the equilibrium equations between internal
forces and moments, n(s) and m(s), and external forces
and moments, f (s) and l(s), for each node to obtain u(s)
and v(s), which are the values of angular and linear rate
of change of each node.

¤n(𝑠) + f(𝑠) = 0 (2)

¤m(𝑠) + ¤p(𝑠) × n(𝑠) + l(𝑠) = 0

At last, the internal force and moment are related with
v and u, exploiting constitutive material laws:

n(𝑠) = 𝑅(𝑠)𝐾𝑠𝑒 (𝑠) (v(𝑠) − v∗ (𝑠))
m(𝑠) = 𝑅(𝑠)𝐾𝑏𝑡 (𝑠) (u(𝑠) − u∗ (𝑠) (3)

Combining (1), (2), (3), we obtain the complete set
of Cosserat rod model derivative equations to be solved.
Evaluating the system in the nodes gives a mechanics-
based representation of the robot shape.

RESULTS
D. Real environment

In Table I are reported the specifications of the main
components chosen for the experimental setup.
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Fig. 1: (A) 3D model of cardiovascular environment and path planning results (light blue path); (B) ARTERY set
up. Two main structures: (1) sheath catheter’s actuation and (2) delivery catheter’s actuation. Motor (1.a) allows the
rotation of the external guide (i.e. sheath catheter); linear actuator (1.b) permits its insertion; linear actuator (2.a)
works on the insertion of the delivery catheter and on the best positioning of the clip, using motors (2.b) and (2.c).
The shafts of the motors and of the catheter are connected through oldham adapters (3). A4988 driver (4) controls the
motor through the Arduino One and (5) is the 24V power supply. (6) shows the virtual environment and (8) emulates
the femural vein Entry Point.

TABLE I: Experimental setup’s components

Components Number Weight [kg] Torque [Nm]
Nema 17

Stepper Motor 3 0.350 1.26
Oldham adapter 3 0.05 1.7
Linear Actuators 2 1.36 2

E. Virtual environment
The trajectories designed in the simulation environment

are evaluated in terms of minimum and average distance
kept from the delicate structures (e.g. wall of vessels) and
time to reach the target. Table II reports the averaged
results on 10 manually executed trajectories.

TABLE II: Trajectories’ parameters

Results Min Distance [mm] Mean Distance [mm] Time [s]
Value 2.74 3.99 47.0

Figure 2 shows the output of the kinematic model when
the catheter is subject to the gravity force along the z-
axis and the displacements of the tendons. In particular,
the first tendon is subjected to a 2.5 cm displacement,
accordingly the third one is released by the same amount,
we don’t have any displacement for the tendon on the top.
The resulting position of the end effector is equal to
𝑝 = [0.3,−0.33, 0.24].
CONCLUSIONS AND DISCUSSION

This works presents the first steps towards the develop-
ment of an autonomous robotic platform for percutaneous
procedures, exploiting a digital twin approach. Indeed, the
actuation of the physical catheter shows promising results,
as we are now able to control the catheter via a joystick.
The kinematic behaviour of the real catheter is well

Fig. 2: (A) Catheter’s kinematic model with gravity force
and tendons displacements; (B) The top view shows the
deformation of the catheter with respect to the original
position.

predicted by the kinematic model, that will be the basis of
our final control strategy. Finally, our virtual environment
allows us to find the best possible path in simulation. We
will use the manual virtual planner to collect a series of
demonstrations performed by surgeons that will be used
to train a Deep Reinforcement Learning Model based on
the principal of learning from demonstrations. Integrating
all these components will lead towards an autonomous
platform.
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INTRODUCTION
Modern-day robots are required to operate au-

tonomously in unknown, unstructured and dynamic envi-
ronments with sufficient accuracy and repeatability. They
are also expected to share the workspace with humans or
other robots in a safe and secure manner. To this extent,
external sensors like force, position, vision etc. play a
prominent role. For instance, force sensors provide local
contact information while vision sensors such as cameras
provide rich and global information of the environment.
This brings up to the question, whether it is possible
to effectively combine several modes of perception (e.g.,
force and vision) within the same control scheme to
benefit from their complementary advantages? Of course,
this does not concern the sequential controllers that are
usually reported in the literature [1]. Combining several
information of different nature and geometry in the same
control scheme can benefit many robotic applications,
including surgical robotics to which the work described in
this paper belongs. This work is part of an overall effort
to improve the current surgical procedure, which consists
of removing a pathological tissue that develops in the
middle ear cavity, called cholesteatoma [2], [3]. This will
involve the development of a minimally invasive robotic
solution and adapted control modes to ensure exhaustive,
accurate and safe cholesteatoma resection from the middle
ear cavity.

In this paper, we investigate new control modes for
middle ear surgery. The main contributions lie in the
formulation of new hybrid controllers by consistently
combining two physical quantities in the control loop.
This allows separating the linear degrees of freedom
(DoF), which are controlled in tele-operation (respectively,
comanipulation) while the rotational DoFs are intuitively
controlled by a vision-based controller.

MATERIALS AND METHODS
As depicted in Fig. 1, the developed robotic setup

consists of a 7 DoF cobot from FRANKA EMIKA on
which a 6 DoF Force-Torque (F/T) sensor (ATI MINI-
40) is attached at the end-effector. Additionally, a 3D
printed tool of 2mm diameter mimicking a typical surgical
instrument used for surgery inside the middle ear cavity
is fixed on the robot’s end-effector. A AVT Guppy PRO
F033b camera (with a frame rate of 25 Hz) is mounted
in an eye-in-hand configuration on the robot end-effector
. A head phantom at scale 1:1 is positioned in order to

Fig. 1: Overview of the developed robotic setup.

simulate the position of a patient on the operating table
during intervention. Finally, a tunnel (having the shape
of the 3D tool) is drilled on the head representing the
operator channel. The size of the drilled hole is slightly
larger than that of the tool to have a tolerance of 0.5 mm
during the tool insertion (Fig. 1).

Different control methods are developed and evaluated
using the robotic setup. Firstly, a classical end-frame tele-
operation mode using position-based controller with a
Sensable Phantom Omni, as well as a comanipulation
mode using the integrated F/T sensor are implemented
on the robotic setup [4]. Secondly, to improve the peg-
in-hole style insertion task of the surgical tool into the
middle ear cavity and through the operating channel
with respect to the ergonomics, intuitiveness, precision
and safety of the procedure, particularly in minimally
invasive surgery, we have developed a new generation of
controllers. These controllers consist of two shared control
laws, which combine proximal (local) and global mea-
surements (Fig. 2). More specifically, local measurements
provided by position or force sensors are combined with
globally observed visual information, which is acquired
from the camera attached to the robot end-effector in an
eye-in-hand setting.

The first shared controller we developed in this work
is called hybrid parallel (Fig. 2(a)). It consists of the
parallel juxtaposition of two internal loops [5]. The first
is a vision feedback loop to automatically manage the
angular motion of the robot. The second is a position-
based (in case of tele-operation mode) or force-based (in
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Fig. 2: Diagram of proposed shared control loops: (a)
Parallel Hybrid force/vision comanipulation (in red) and
position/vision teleoperation (in blue) control scheme (b)
External Hybrid force/vision comanipulation (in red) and
position/vision teleoperation (in blue)

case of comanipulation) loop to control the linear motion.
When both the force/position and vision-based con-

trollers work in parallel, there is a risk that the tracked
visual features (i.e., the AprilTag) are lost (i.e., goes out
of the camera field of view (FoV)). This could jeopardize
the accuracy of final positioning task. To tackle this issue,
we have designed a new hybrid controller called external
hybrid, as depicted in Fig. 2(b). The underlying idea is
to express the control task as two hierarchical sub-tasks.
The first task (priority sub-task) deals with maintaining the
AprilTag at the center of the camera FoV, while the second
one (secondary sub-task) is devoted to the regulation of
the error between the current and the desired poses.

RESULTS
The proposed controllers were validated and compared

with each other by analysing the scenario where a 3D
printed tool is inserted into an incision hole. Initially, the
robot is placed in an arbitrary position, then the operator
has to jog it in front of the incision and to insert the tool.
A group of 5 participants (2 experts and 3 novices) carried
out the positioning and insertion tasks using different tele-
operation (classic, parallel hybrid and external hybrid)
and comanipulation (classic, parallel hybrid and external
hybrid) control modes. For each of the performed tasks,
Cartesian errors (along each DoF) as well as the time
required to achieve the tasks are recorded and analysed.

Fig. 3 summarizes the translation and rotation errors.
For comanipulation modes, it can be noticed that the
classical mode is slightly more accurate than the external
hybrid one. The parallel hybrid is the most accurate with
the mean linear error 𝑒𝑡 = 0.84 mm (2.15 mm and
2.17 mm for the classical and external hybrid methods,
respectively). The mean angular error clearly shows that
the parallel hybrid comanipulation gives the best result
with 𝑒𝑟 = 0.45◦ (6.67◦ and 3.07◦ for the classical and
external hybrid methods, respectively).

Fig. 3: Mean translation errors and rotation errors for
the evaluated control laws. (a) tele-operation modes (b)
comanipulation modes

For tele-operation modes, the result is similar to co-
manipulation modes, parallel hybrid is the most accurate.
The average linear error is 𝑒𝑡 = 0.67 mm (1.32 mm and
1.49 mm for the classical and external hybrid methods,
respectively). Finally, one can point out that both shared
control methods outperform the classical control laws.

Considering the required time to complete the defined
insertion task, it appears that the hybrid parallel tele-
operation approach needs in average 40.53 ± 10.09 sec-
onds, which is 50% faster than the classical and external
hybrid ones, when the hybrid parallel controller requires
on average 29.03 ± 6.94 seconds to achieve the task,
which is approximately 25% faster than the others control
schemes.

CONCLUSIONS AND DISCUSSION
The objective of this study was to provide surgeon, er-

gonomic, intuitive and accurate control method for the tool
positioning at the early stage of a cholesteatoma surgery.
To do so, a new generation of hybrid position/vision
and force/vision were proposed and evaluated using a
robotic setup under a scenario of inserting a surgical
tool through a millimetric incision hole performed behind
the ear lobe. This study demonstrated that the shared
control laws outperform the classical tele-operation and
comanipulation modes, both in accuracy and time required
to perform the predefined task.

Future work will focus on the implementation of the
proposed controllers in clinical situation. Senior and junior
surgeons will be recruited to evaluate the benefit of such
approaches in the operating room.

ACKNOWLEDGMENT
This work has been supported by French ANR `RoCS

Project no ANR-17-CE19-0005-04.

REFERENCES
[1] J. Baeten, H. Bruyninckx, and J. De Schutter, “Integrated vi-

sion/force robotic servoing in the task frame formalism,” The Int. J.
of Rob. Res., vol. 22, pp. 941–954, 2003.

[2] B. Dahroug, B. Tamadazte, and e. a. Tavernier, “Review on oto-
logical robotic systems: Toward micro-robot assisted cholesteatoma
surgery,” IEEE R. in Biom. Eng., vol. 11, pp. 125 – 142, 2018.

[3] J. J. Holt, “Ear canal cholesteatoma,” The Laryngoscope, vol. 102,
pp. 608–613, 1992.

[4] J. So, B. Tamadazte, and J. Szewczyk, “Micro/macro-scale robotic
approach for middle ear surgery,” IEEE T. on Med. Rob.and Bion.,
vol. 2, pp. 533–536, 2020.

[5] J.-H. So, S. Sobucki, J. Szewczyk, N. Marturi, and B. Tamadazte,
“Shared control schemes for middle ear surgery,” Frontiers on
Robotics and AI, pp. 1–12, 2022.

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 113



Proceedings of the 11th Joint Workshop on 

New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 

 

A posterior landmark-based registration-free method to identify pedicle screw 

trajectories for robot-based navigation: A proof-of-concept 

 D. Suter1,2, A. Massalimova1, C. Laux2, F. Carrillo1, M. Farshad2, P. Fürnstahl1 

1Research in Orthopedic Computer Science, University Hospital Balgrist, University of Zurich, 
2Department of Orthopedic Surgery, University Hospital Balgrist, University of Zurich 

 daniel.suter@balgrist.ch 

 

INTRODUCTION 

Pedicle screw placement (PSP) is a frequent intervention 

in spine surgery. The use of robotic systems for PSP gains 

increasing attention, as they allow more accurate screw 

implantation. In current approaches, screw trajectories 

are predefined in preoperative computed tomography 

(CT) data and adapted to intraoperative anatomy via 

registration. However, this approach is increasingly 

being questioned because the patient is exposed to 

radiation, the registration remains error-prone, and the 

screw trajectories cannot be adjusted intraoperatively. 

The EU Horizon 2020 project FAROS aims to develop a 

radiation- and registration-free robotic system for spine 

surgery. FAROS foresees using robotic ultrasound (US) 

to reconstruct a 3D model of the spine based on the 

preliminary work of Ruixuan Li et al. [1] (see figure 1). 

However, the existing approaches for navigation rely on 

CT scans where the full vertebra is visible to define screw 

trajectories. As US only allows to reconstruct the 

posterior surface of the spine (Fig.1) and not entire 

vertebrae a new method is required. In this work, we 

present a new approach capable of defining screw 

trajectories based on two points (p1 and p2) which can be 

defined on posterior surface models alone. P1 therby is 

equivalent to the conventional entry point and p2 to the 

point of the screw tip. 

 
Figure 1. 3D model of the vertebrae (gray) and posterior 

surface of the spine visble in 3D US (orange) in posterior (A); 

sagittal (B); axial (C) views.  

MATERIALS AND METHODS 
In freehand screw placement the EP in the lumbar spine 

is located at the junction between the pars interarticularis 

and the transverse process immediately lateral to the 

mammillary process, or at the bisection of a vertical line 

through the facet joints and a horizontal line through the 

transverse process [2]. An optimal screw trajectory 

should be parallel to the upper-end plate in the sagittal 

plane and should not cross the midline in the axial plane. 

The screw is inserted perpendicular to the tangent of the 

spinous processes. There are rough reference values for 

the convergence of the screw (axial plane). The 

convergence of the screw increases from L1 to L5 and 

ranges from 5° (L1) to 45° (L5). Our method can be 

divided into the following steps: definition and 

adjustment of the sagittal, coronal, and axial plane (step 

1), definition of p1 (step 2), and definition of the p2 and 

thus determination of the trajectory (step 3). 

 

Step 1. Definition and fitting of anatomical planes 

Three orthogonal planes corresponding to the sagittal, 

coronal, and axial planes of the human body are created. 

Those are hereafter aligned to anatomical landmarks of 

the 3D model as follows. First, the sagittal plane is 

aligned in the direction of the spinous process (Fig. 2 A, 

B). Alignment of the axial plane is first performed in the 

posterior and then in the lateral view as follows. In the 

craniocaudal direction, the axial plane is aligned to the 

junction of the middle to caudal third of the transverse 

process (Fig. 2 C). 

 
Figure 2. A and B: Alignment of sagittal plane (pink) to 

spinous process on posterior mesh (orange) in axial (A) and 

posterior (B) views. C: Orientation of axial plane (blue) based 

on transverse process. Black lines indicate the border of 

cranial, middle and caudal third of transverse process. 

Subsequently, the sagittal angulation of the axial plane is 

defined on the lateral view. To this end, the coronal plane 

is first translated to be tangent to the transverse processes 

just laterally of the mammillary processes. Afterwards, a 

copy of the coronal plane (hereinafter defined as tangent- 

plane, yellow in Fig. 3A) is parallelly moved posteriorly 

until it touches the most posterior aspect of the spinous 

process. The axial plane is then rotated until the tangent 

plan is tangent to the lordosis at the most posterior aspect 

of the spinous process. 
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Figure 3. A: (sagittal view) Orientation of axial plane (blue) in 

lateral view based on the tangent plane (yellow). Purple plane 

: parallel to axial plane (blue) through main axis of spinous 

process. Light brown plane: coronal plane. B: (posterior view) 

definition of p1 (green sphere and arrow). Red plane= 

parasagittal plane. 

Step 2. Definition of p1 

P1 is defined as the intersection of the coronal plane, the 

axial plane, and a right/left parasagittal plane (red in fig. 

3B) lateral to the mammillary processes if prominent or 

at the transition between the transverse process to the pars 

interarticularis. 

 

Step 3. Definition of p2 
To identify p2, additional planes are defined. Due to 

anatomical differences between levels, the definition 

varies for levels L1-L2 and L3-L5. First, a parasagittal 

plane is chosen tangential to the most lateral aspect of the 

facet joint (facet-plane, red in Fig. 4). For L1-L2, a 

parasagittal plane midway between the sagittal and facet 

planes (screw-tip plane, green in Fig. 4) is selected. For 

L3-L5, the screw-tip plane lies medially at one-quarter of 

the distance between the facet plane and the sagittal 

plane. Finally, a additional plane parallel to the tangent 

plane is created  with the distance tangent plane to  at the 

distance from the tip of the spinous process to the most 

anterior fifth of the vertebral body according to the axial 

CT image (anterior plane, black in Fig. 4). P2 is defined 

as the intersection of the anterior plane, the screw-tip 

plane and the axial plane. Lastly, the screw trajectory is 

defined as the direction vector from p1 to p2. 

Figure 4. A: axial view with anterior plane (black), facet plane 

(red), screw tip planes (green, lateral for L1-2 and medial for 

L3-5), tangent plane (yellow), sagittal plane (pink), coronal 

plane (light brown) and axial plane (blue transparent).                

B: axial view with defined p1, p2 and trajectory. C, D: defined 

trajectory on axial and sagittal view, respectively. 

 

Evaluation 
We used retrospective CT data from 9 human lumbar 

spine cadavers for evaluation of the proposed method. 

For each lumbar vertebra (L1 to L5), ground-truth screws 

were planned using a surgery planning software 

(CASPA, Balgrist, Switzerland). In a next step, the 

posterior surface was maked in Materialise 3-Matic using 

the brush function to mimic the reconstructed 3D US data 

(Fig. 1). The proposed method was then manually applied 

on the posterior surfaces using CASPA. Subsequently, 

the trajectory position and direction error was evaluated 

by comparing the trajectory from the proposed method 

with the ground-truth treajectories.  

RESULTS AND CONCLUSION 

The average trajectory position error in 3D (euclydien 

distance) between the new method and the ground truth 

was 4.06 mm (± 2.62 mm) in our analysis. The average 

trajectory direction error (euler angle) was 4.74° (± 

3.48°). However, these data are not fully conclusive as to 

whether a clinically relevant perforation would result of 

our screw placement. Concerning the angular deviation, 

our values lie within the range of the reported literature. 

The position error in our analysis was determined for p2 

in all instances, which corresponds to the tip of the screw. 

Up to date, there are no reported values for this 

measurement. However, the deviation at the tip point of 

4.06 mm (± 2.62 mm) is just below the difference 

between the conventionally available screw lengths. 

Thus, the deviation would be correctable by a different 

screw length. 

In this study, we proposed a novel method for defining 

the screw trajectory during spinal surgery only requiring 

a 3D-reconstruction of the posterior surface of the spine. 

The preliminary results proved feasibility on simulated 

data based on CT. The evaluation on real data obtained 

from robotic ultrasound will be addressed in future work.   
 

Table .1. Accuracy of our methods compared to ground truth 

data  

  Position error [mm] Direction error [°] 

overall 4.06 (± 2.62) 4.74 (± 3.48) 

L1 6.09 (± 1.59) 7.44 (± 4.50) 

L2 4.90 (± 1.68) 5.91 (± 3.74) 

L3 1.76 (± 1.64) 2.58 (± 1.34) 

L4 2.67 (± 2.09) 3.03 (± 0.92) 

L5 4.88 (± 3.76) 4.74 (± 4.26) 
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INTRODUCTION
Intratympanic steroid injections are commonly used for

the treatment of ear diseases. During this treatment, an ex-
pert Ear, Nose Throat (ENT) clinician deliver the drug by
viewing through a large microscope that provides a close-
up view of the anatomical landmarks on the middle ear. A
steady hand and swift response to any patient movement
is required to avoid improper placement of the needle.
To assist the clinician during this treatment, a fluidic soft
robot is proposed in [1] that can steer inside a lumen for
providing steady guidance for the drug delivery. For robust
visual guidance, stable anatomical landmarks (tympanic
membrane, malleus, umbo) segmentation is required.

The current method [1] uses a clinical data pixel-wise
annotated for the segmentation model training, which
does not generalise to the phantom ear data currently
use for the in-lab validation of the soft robot. The
clinical data is taken from a high-resolution optical
microscope from a fixed camera perspective with diffuse,
even lighting. While the phantom images are recorded
on a miniature digital camera endoscopically, from
multiple perspectives and often with uneven, highly local
illumination. The phantom is 3d-printed from patient
scans [2] and coated with a pigmented silicone rubber
(Dragon Skin™ 30, Smooth-On Inc., Easton, PA, US)
to create a skin-like surface texture. Transparent silicone
rubber is employed to create a membrane to resemble the
tympanic membrane. Whilst being close to real patient
anatomy, the phantom exhibits visual differences in terms
of the coloring of the tissues and tympanic membrane,
the translucence of the tympanic membrane as well as the
overall visibility of the middle ear structure. This means
that labelled clinical data and the previously labelled
phantom data are not representative of the images that
will be passed to the model during deployment (Fig. 1).

Due to the difference in training and deployment data,
model predictions can be both inaccurate (incorrectly
identifying the structures of the tympanic membrane) and
unstable (predictions are discontinuous and noisy). Both
are serious challenges for using such models as part of a
robot control system – especially, the lack of prediction

∗This research was supported by the Wellcome/EPSRC Centre
for Interventional and Surgical Sciences (WEISS) [203145/Z/16/Z];
the Engineering and Physical Sciences Research Council (EPSRC)
[EP/P027938/1, EP/R004080/1, EP/P012841/1]; and the Royal Academy
of Engineering Chair in Emerging Technologies Scheme.
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stability. In this work, we perform intra-domain adaptation
to learn a generalised model that provides stable and
consistent segmentation on unseen phantom data.

MATERIALS AND METHODS
We propose using three segmentation models with

DeeplabV3+ [3] architecture and three different back-
bones. We use transfer learning, initialising the models
with ImageNet weights, and high amounts of data aug-
mentation while using training techniques that encourage
reduced convergence times for domain adaptation. These
models are ensembled, with the output taking predictions
of the composed logits for each class; taking advantage of
each model whilst filtering out uncorroborated predictions.
This results in both the stable and generalised predictions
on unseen phantom data. Our approach takes advantage of
smaller models’ ability to learn smaller class features in
fewer epochs and larger encoder’s ability to output more
stable predictions over a wider array of novel inputs.
Transfer Learning and Learning rate schemes: To
compensate for the limited amount of labelled data and the
need for the model to generalise to out of domain images,
we used encoders pre-trained on Imagenet. To preserve
useful, generalisable pattern and shape identifying convo-
lutions shallower in the network, we utilise discriminative
learning rates throughout the training - training shallower
layers at a lower learning rate and deeper layers at a higher
learning rate to increase the performance of the task
specific segmentation. We also utilise scheduled learning
rates – specifically the fit one cycle [4] which has been
shown to both improve model performance and reducing
convergence time. This approach increases the learning
rate of the model for the first 30% of the total epochs; the
learning rate is then annealed, returning to its original base
value at the end of the training. Additionally, momentum is
also adjusted to help with regularisation and ameliorate the

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 116



In
pu

ts
am

pl
e

1
a b c d e

In
pu

ts
am

pl
e

2

f g h i j

ResNet50 ResNet101 ResNet152 Ensemble
Fig. 2: Visual results showing unseen phantom input images and the model output when using ResNet50, ResNet101,
ResNet101 as backbones for DeepLabV3+ [3] and the ensemble of all these models.

TABLE I: Qualitative comparison of different models
using mean intersection over union (IoU) and F1 score.

Architecture Encoder IoU F1 score
DeepLabV3+ ResNet50 0.8323 0.9085
DeepLabV3+ ResNet101 0.8277 0.9057
DeepLabV3+ ResNet152 0.8322 0.9084

Ensemble (proposed) ResNet50/101 0.8353 0.9089

effects of the higher learning rate. Following the inverse
of the learning rate schedule, momentum is reduced to
its minimum value at 30% of total epochs, returning to
its original value at the end of training. Learning rates
were set using the learning rate finder approach [4].

Starting with a very low initial learning rate many
batches are drawn, the loss calculated and recorded then
optimised. With each mini batch the learning rate is
incrementally increased until the loss explodes. This pro-
cess allows us to efficiently and quickly estimate optimal
learning rates without having to conduct large, slow and
computationally expensive hyperparameter sweeps.
Data Augmentation: Data augmentation is an important
part in stabilising and generalising model predictions. To
help the model generalise to the unseen Phantom data we
augment the data across three categories: image position
(dihedral flips, rotation) perspective (warping, zooming)
and lighting (brightness, saturation). Additionally, we also
employed random resize crop which has been shown to
both assist with generalisation and model performance.
Ensemble of Models: The ensemble mask prediction was
created by composing the three models logits’ for each
class; The sum of the logits were taken, averaged and
then passed through a threshold to create the ensemble’s
class prediction. For the malleus and umbo layers, the
magnitude of the negative logits were reduced by 50% for
the ResNet152 and ResNet101 encoders and 80% for the
ResNet50 - This helps to reduce the effect of large negative
logits from an unsure model cancelling out correct predic-
tions. This is particularly necessary for small class features

that can be easily obscured by false negative logits; con-
versely, the Tympanic membrane Benefits from taking the
sum of (un-reduced) logits helping to stabilise boundary
edges, especially with directional or off axis lighting.
RESULTS, DISCUSSION, AND CONCLUSIONS

We observe from qualitative comparison that the en-
sembled model’s prediction are both more stable and more
robust even on off axis out of domain sequential images
(videos). However, the improvement reported in Table I is
marginal which is mainly because limited labelled data
was available for the quantitative analysis that didnot
capture variabilities that are observed in sequential data.
Ensembling model of different backbone sizes creates
outputs that have significantly more stable anatomical
landmarks - specifically with the umbo which often is
either not predicted (Fig. 2 (b), (c), (g)) or predicted in
multiple locations (Fig. 2(d)). This can cause problems If
the landmark is used As part of a positioning or typing
system. Ensembling multiple different models has several
advantages over alternative methods such as test time aug-
mentation which while can effectively stabilise predictions
severe off axis or novel lighting can insufficiently cause
smaller, more marginal class features to be lost. However,
increase in predictive power comes at the cost of greater
prediction latency memory requirements.
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INTRODUCTION
Common disabilities like stroke and spinal cord injuries

may cause loss of motor function in hands [1]. They can be
treated with robot assisted rehabilitation techniques, like
continuously opening and closing the hand with help of a
robot, in a cheaper, and less time consuming manner than
traditional methods [2]. Hand exoskeletons are developed
to assist rehabilitation [3], but their bulky nature brings
with it certain challenges. As soft robots use elastomeric
and fabric elements rather than heavy links, and operate
with pneumatic, hydraulic or tendon based rather than
traditional rotary or linear motors, soft hand exoskeletons
are deemed a better option in relation to rehabilitation [4].

A variety of soft actuator types can be used to achieve
hand rehabilitation tasks. Silicone [5], fabric [6] and
tendon [7] based actuators are the most common ones.
In this work we present a soft hand exoskeleton intro-
ducing elastic band integrated fabric based actuators (Fig.
1). The glove helps the user perform hand flexion and
extension motions, making it usable for rehabilitation and
assistive purposes. Furthermore, thanks to expert textile
manufacturing techniques and the exploiting of soft textile
structures, it enhances wearability comfort and is closer
than previous incarnations to a clothing accessory.

Fig. 1: Our novel fabric based soft hand exoskeleton robot,
worn relaxed (left) and actuated (right).

MATERIALS AND METHODS
Our fabric exoskeleton glove is developed following it-

erative prototyping and experimenting with various textile
materials. To optimise the design, we have tested a wide
selection of fabric types and manufacturing techniques that
show potential synergy for a soft exoskeleton finger. Due
to required stretch capabilities, we focused on structures
with a high elasticity as a key characteristic. Moreover,
we chose materials that accommodate ubiquitous design

approaches to rehabilitation equipment and a better user-
acceptance: soft and smooth fabrics similar to our own
clothing.

Among the other key features of fabric actuators for soft
hand exoskeletons are a large curvature and constant force
across the surface of the actuator. This can be achieved by
creating an imbalance between the top and bottom layer
of the fabrics. The greater the imbalance, the better the
flexion as well as force capability.

After preliminary sampling, we selected 3 actuators,
shown in Fig. 2, that combined the most successful
actuator characteristics: a woven stretch fabric (Fig. 2 c);
a non-stretch woven cotton fabric with an added elastic
band along the sides (Fig. 2 b); and the combination of
the two, a woven stretch fabric with elastic band (Fig. 2 a).
To actuate them, a latex bladder is inserted to guarantee
airtightness.

Fig. 2: Best performing designs non actuated (left) and
actuated (right): a)woven stretch fabric, elastic band ; b)
non-elastic woven, elastic band; c) woven stretch, no band.

RESULTS
To identify the best of the 3 actuators, we ran tests

to measure their flexion angle and force capabilities.
Flexion angle is a critical parameter for assistive gloves,
it is imperative that each finger is unrestricted in relation
to its maximum angle [1]. Inflatable actuators therefore
need large bending capabilities. Equally important is its
force capability. For achieving activities of daily living an
acceptable force capability is around 10-15 N [1].

Figure 3(a) shows that bending angle capability of the
’stretch with band’ actuator is superior to the others. Just
30 kPa pressure is enough for it to bend a full cycle of
360 degrees. Since it is geometrically impossible to bend
further, the actuator maintains its position after this point.
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’Stretch only’ and ’cotton with band’ actuators can bend
approximately 190 and 210 degrees respectively under
70 kPa pressure. While these values are also acceptable
from a rehabilitation perspective, the ’stretch with band’
actuator is clearly a better option.

Fig. 3: Flexion angle versus pressure (a) and force versus
pressure (b) plots for three selected actuators.

From Figure 3(b) it is seen that the ’stretch with band’
actuator can apply 22 N force at about 100 kPa pressure.
This is outperforming any other fabric or silicone based
soft hand exoskeleton bending actuator. The ’stretch only’
actuator can go up to 8 N force and the ’cotton with elastic
band’ actuator up to 18 N. It is also seen that our latex
bladders can maintain more than 100 kPa pressure.

To unleash the maximum potential of the actuators, they
need to be inflated to 100 kPa. However to prevent the
latex bladder to fail (between 110 and 120 kPa) running
them at 100 kPa for a long period might reduce the lifetime
of the bladder. Operating them at 70 kPa might represent
a sensible compromise, but that pressure would not be
enough for the ’stretch only’ actuator to carry out activities
of daily living. The ’stretch with band’ and ’cotton with
elastic band’, however, would be able to do so [1].

These tests confirm that, the actuator using stretch fabric
with integrated elastic bands shows excellent performance
both in relation to bending angle potential and force
capability. The findings of the tests can now be used to
lead the design of a new exoskeleton prototype.

The Prototype
The fabric based soft hand exoskeleton is manufactured

using our ’stretch with band’ actuator (Figure 1) which
was found to be the best candidate in light of test results.
The base glove, which the actuators are mounted on, is
made from four-way stretch fabric: a black viscose jersey
knit to guarantee soft feel on the skin.

The five inflatable fingers were sewn together with
an overlock machine and hand-stitched onto the glove,
reaching from the fingertip down to the centre of the back
of the palm. For this prototype, each finger was fabricated
from the same pattern and with the same dimensions -
something that can be simply changed to accommodate
different finger sizes. For the glove to be able to assist
with the extension motion of the hand as well, another
simple two layer fabric actuator is hand stitched between
the base glove and the bending actuators.

In Figure 4 the exoskeleton glove can be seen supporting
the hand while grasping objects.

Fig. 4: The final hand exoskeleton glove “in action"
grasping and releasing a phone and an iron.

CONCLUSION AND DISCUSSION
In this work, we present a novel actuation method for

a fabric-based soft robotic exoskeleton glove. Integrating
elastic band to the stretch fabric based actuator enhancing
the capability of the exoskeleton, making it able to bend
high angles in low pressure values, and boosting its force
exertion capability to the fingers. Furthermore, our ’stretch
with band’ actuator can produce higher forces than any
other available silicone or fabric based alternative. This
improves grasping ability for the user that is a critical
element in the rehabilitation process.

Assistive wearable devices should be designed with
consideration given to the needs of the physically vulnera-
ble. Being lightweight, a characteristic inherent in fabric-
based devices, is therefore clearly a potential advantage
textiles bear. We are accustomed to feel textile on our
skin, which makes this material promising with regards
to rehabilitation. Last but not least, this makes the robot
also more acceptable to users.
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INTRODUCTION
Soft robotic manipulators are attracting increasing in-

terest among researchers, thanks to their ability to achieve
structural deflection upon fluidic actuation and adapt to
unconstrained environments. In particular, in the field of
minimally invasive surgery (MIS), where a soft interaction
with the human body is required, such systems made of
low-stiffness materials have enabled new possibilities.

Despite noticeable advantages that using soft matter
might bring in designing interventional surgical devices, a
number of impediments are constituted to the development
of a fully autonomous system. Designing a stable and
real-time control system along with developing a robust
sensing scheme are open problems in soft robotics. The
engineering challenges related to the control of soft robots
usually stem from the fact that soft continuum manip-
ulators tend to be underactuated mechanical systems.
Another contributing factor to control challenges are the
unstructured areas with which soft robots interact, espe-
cially those in surgical applications. However, accurate
measurement of the deformation of soft robots in these
environments facilitates the design of a reliable control
system by providing correct feedback signal. Given the
highly compliant characteristic of continuum robots, a
sensor should be able to stretch enough to track and detect
slight deflections in the soft actuator. Aside from being
flexible enough, the sensing of a surgical tool should be
biocompatible, robust to the existing electromagnetic field
in the operation room and radiation-free [1].

Here, we propose a promising method for
proprioceptive shape reconstruction of soft continuum
manipulators based on electrical impedance tomography
(EIT), which is a compelling candidate for measuring
deformation in soft surgical instruments [2]. Additionally,
the EIT performance for different number of electrodes
is evaluated through numerical simulations.

MATERIALS AND METHODS
In this study we simulate the planar deformations of a

soft manipulator made of silicone elastomer and reinforced
with nylon fiber. Figure 1.c shows the soft manipula-
tor in a cardiovascular phantom. Hydraulic actuation is
preferred over pneumatic actuation as it shows several
benefits, including lower friction and the possibility to
exert higher forces at the tip of the manipulator, as
well as facilitating sensor integration. Using EIT in the
proposed soft continuum manipulator of Figure 1 renders

Fig. 1: a) Equivalent rigid kinematic model defined by
variables 𝑞1 and 𝑞2. b) Location of EIT electrodes on the
proposed soft manipulator. c) Soft manipulator for MIS in
a cardiovascular phantom. [3]

a proprioceptive actuator that exploits a single hydraulic
input as both sensing and actuation unit of the system.
The proposed soft actuator in this article is pressurized
by means of 0.9 % saline solution. Saline is a bio-
compatible substance and using it in MIS applications
minimizes risks to the patient in case of any damage
to the soft body or leakage. Electrical current is passed
through saline and, by measuring the resultant localized
potential differences from particular sections along the
robot’s axis, the corresponding shape of the systems can
be estimated in response to the deformations. This process
of current injection and voltage recording is carried out
via an array of electrodes that are inserted and spaced at
specific intervals along the axis of the soft manipulator.
After obtaining the voltages in a sequential manner and
with various current injection patterns, a series of partial
differential equations are employed for solving the forward
problem in EIT [4]. Employing the geometry of the robot
as boundary conditions, solving the forward problem using
the finite element method (FEM) leads to the calculation
of a sensitivity matrix. The inverse of the sensitivity
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(a) Voltage measurements for different numbers of electrodes. Configu-
ration number 1: 𝑞1= 5, 𝑞2= 10 degrees, Configuration number 2: 𝑞1=
30, 𝑞2= 35 degrees.

(b) Estimation of real perturbation value by 4 and 11 electrodes
with corresponding conductivity changes.

Fig. 2: EIT performance for different number of electrodes

matrix is utilized for solving the inverse problem in EIT
which yields the reconstruction of the soft manipulator’s
shape [2].

RESULTS
Current injection and voltage recordings are carried out

by pairs of electrodes and through repeated measurement
patterns. For example, as depicted in Figure 1.b, the
current is injected in 1-4, and the voltage is measured
from 1-2, 2-3, and 3-4, which represent the measurement
protocol. In the next iteration, the injection pair shifts to
2-3, for instance, and the voltage is measured from the
same three pairs. This protocol of voltage measurement
is then repeated for the other injection pairs. One of the
design parameters that can significantly contribute to the
improvement of the accuracy in EIT sensing is the number
of integrated electrodes.

To investigate the effect of the number of electrodes,
several deformations are simulated using an equivalent
rigid-link kinematic model [3] shown in Figure 1.a. Thus,
the curvature of the soft manipulator is defined by joint
angles 𝑞1 and 𝑞2. In particular, 50 deformations were
simulated with 𝑞1 from 5 to 30 degrees, and 𝑞2 from 10

to 35 degrees. To investigate the effect of the number of
electrodes, the current was injected between the first and
last electrodes at the distal ends of the soft manipulator.
As voltage measurement pairs, the electrodes on the both
sides of 𝐶2 were chosen for each electrode count. For
instance, in the case of 4 electrodes, electrode 2 and 3
were chosen (see Figure 1.b). As shown in Figure 2.a,
by increasing the number of electrodes, the sensitivity of
EIT decreases. This can be seen in the different voltage
ranges for each electrode counts. This sensitivity reduction
is due to the smaller volume of saline between electrodes,
which is in direct correlation with the increase in the
measured voltage. However, increasing the number of
electrodes results in better spatial resolution. In particular,
the deflection caused by the interaction of the manipulator
with obstacles are interpreted as perturbations in EIT and
higher spatial resolution results in a more accurate shape
reconstruction of the soft manipulator. It is shown in
Figure 2.b that EIT with 11 electrodes renders a better
approximation for the value of the real perturbation than
the one with 4. As a result, when choosing to include
more electrodes in EIT, a balance between high sensing
sensitivity and accurate shape reconstruction should be
maintained.

CONCLUSIONS AND DISCUSSION
A promising strategy to design a sensing scheme for

soft continuum manipulators hydraulically actuated by a
conductive fluid was presented that may enable a new gen-
eration of soft manipulators with real-time proprioceptive
sensing.

In this work, an optimization of the number of elec-
trodes was performed. The results indicate that increasing
the number of electrodes yields a decreased sensitivity but
also a more accurate shape reconstruction. Ongoing work
focuses on the manufacturing of soft manipulators with
integrated EIT sensing in order to validate the simulations
with experimental data.
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INTRODUCTION
Natural language processing (NLP) has rapidly ex-

panded over the last 20 years thanks to increasing com-
putational resourses and high investment from both many
research groups and private companies, with the aim of
automating various tasks previously performed manually
[1]. A notable rise has occurred recently also in the
medical domain, with the introduction of deep learning
technologies and pre-trained language models, such as
BERT [2]. Despite this rapid growth, only few studies
have attempted to apply deep learning NLP methods to the
surgical domain, which is a sub-category of the medical
one. The majority of the studies in surgery deals with the
extraction of outcomes from textual records and with other
text classification applications [3].

Robotic devices, also known as Surgical Robotic Sys-
tems (SRSs), are increasingly pervasive in operating the-
aters. Together with the introduction of surgical robots,
numerous books, manuals, academic papers and online-
resources about robot-assisted surgery have been pub-
lished. They are used by medical trainees to acquire or
refine their knowledge.

Extracting structured workflows from surgical textual
resources would be beneficial both for the development of
autonomous SRSs and for the intra-operative assistance
to the surgeon. However, the manual extraction of these
workflows requires substantial human effort and expertise.
NLP mining technologies for robot-assisted surgical texts
will open new frontiers of research. In particular, they
would enable:

• the extraction of high-level information from surgical
text-books (e.g. phases, steps or actions). This would
improve computer-assisted planning of surgical pro-
cedures.

• the development of cognitive SRSs, that recognize
surgical entities (e.g. anatomical parts, tools, actions)
in the texts and link them with existing a-priori
knowledge represented in ontologies. They would
allow to infer knowledge not explicitly stated in the
texts improving situation awareness algorithms and
robotic assistance;

• the use of a-priori knowledge by the SRS. This will
be an essential step toward cognitive surgical robotics
[4].

From surgical textbooks, we can extract two types of
knowledge:

• Declarative knowledge, usually formalized into on-
tologies. In surgery, declarative knowledge describes
for example the characteristics of anatomical struc-
tures (e.g., the tissue color or the organ size), the
technical specifications of the robotic tools and ex-
ceptional events that can happen both intra- or post-
operatively.

• Procedural Knowledge, possessed by an intelligent
agent that is able to perform a task. In surgery, the
intelligent agent is a surgeon or an autonomous SRS,
and procedural knowledge describes how surgical
interventions should be performed.

A limited number of studies (in non-medical domains)
have addressed the problem of Procedural Knowledge
extraction, from annotated instructional texts of recipes or
maintenance/repair manuals [5]. The number of published
works is even lower in the biomedical field, and only
one preliminary work has been published in the robotic
surgery domain [6]. This is due to the lack of annotated
publicly available data in the procedural surgical literature
that could be used to develop supervised deep-learning
methods. Furthermore, annotating datasets for NLP is
a very expensive task that requires expert personnel. A
possible solution could be to use procedural datasets
belonging to other domains. This work therefore wants
to investigate the linguistic differences between robot-
assisted surgery books and other domains, such as cooking
recipes or repair manuals. This is an essential information
for enabling the direct application of knowledge extraction
algorithms designed and developed for other domains to
surgical robotic.

I. MATERIALS AND METHODS
In this work, we propose the first linguistic comparison

between the procedural language used in robotic-surgery
textbooks and in other domains. We have compared three
representative datasets, SPKS dataset1 and the two proce-
dural datasets used by [5]. The first consists of 20 descrip-
tions of robot-assisted surgical procedures belonging to
the urological, gynecological, gastrointestinal and thoracic
domains [6]. [5] instead deals with 30 cooking recipes
from the BBC recipe website2 (referred as "BBC" later
on) and 30 "How-Tos" from eHow.com website referred
as ("E-HOW" later on).

1https://gitlab.com/altairLab/spks-dataset
2https://www.bbc.co.uk/food/recipes
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TABLE I: Values of the metrics considered in this work for the 3 analyzed datasets.

SPKS BBC E-HOW
𝛼 13.8 5.6 6.4
𝛽 3.64 2.0 2.35
𝛾 1.74 1.75 1.79
𝛿 > 30% <5% <5%

The comparison is based on the following metrics:
• (𝛼): Flesh-Kincaid’s readability score3:

𝐹𝐾𝐺𝐿 = 0.39(𝐴𝑆𝐿) + 11.8(𝐴𝑆𝑊 − 15.59)
where 𝐴𝑆𝐿 (Average Sentence Length) is the number
of words divided by the number of sentences, 𝐴𝑆𝑊
(Average Number of Syllabes per Word) is the num-
ber of syllabes divided by the number of words. The
higher the score, the harder the text.

• (𝛽) average number of verbs per sentence identified
with POS-Tagging and lemmatization techniques [7].

• (𝛾) number of average semantic roles per verb us-
ing state-of-the-art transformer-based semantic role
detection algorithms [2].

• (𝛿) Percentage of sentences using domain verbs not
found in [8]. The coverage is evaluated in terms of
presence of the lemma and of an appropriate frame
in the resource.

The first metric is designed to measure the difficulty
of an English sentence for an human reader. The second
metric instead investigates the syntactic and structural
aspect, analyzing how many tokens with the role of verb
(i.e. possible actions) are present in the sentence. It gives
clues on the procedural complexity of a sentence. The
third metric investigates how complex it could be for
an information extraction algorithm to understand and
disambiguate the sentence and link the lexical tokens
semantically. The fourth metric measures how much state-
of-the-art semantic propositional banks, built manually
using statistical analysis of general-English texts, cover the
lemmas and frames often used in procedural languages.

RESULTS AND DISCUSSIONS
Table I shows metrics described in the previous section

for the 3 datasets considered.
The SPKS dataset has a much higher FKGL score

than the other two. A value of 13.8 means difficult to
read: college graduate expertise. The other two datases
have scores below 7, which correspond to fairly easy to
read: primary school expertise. The implication is that a
domain expert (doctor or linguist) is needed to annotate
the surgical dataset for supervised algorithms. SPKS also
has a higher number of verbs per sentence (1.83 times
more than BBC and 1.54 times more than E-HOW).
This indicates that the procedural sentences written in
the surgical manuals are significantly more complex than
those of the other domains. All 3 datasets have an almost

3This formula has obvious limitations because considers only struc-
tural features: for example, the pangram "Cwm fjord-bank glyphs vext
quiz" is considered very easy to read. It is, however, representative, since
it captures useful information.

equal number of semantic roles per verb. This is expected,
since the languages are procedural and the number of
elements involved (e.g action, agent, target or tool) is
almost the same, regardless of the domain. Finally, the
surgical domain makes use of a larger number of domain
verbs (for instance kocherize, extraperitonealize, grasp)
not covered by semantic textual resources. This suggests
that current semantic banks developed for general-English
are unable to fully represent the semantic complexity
of procedural surgical language and should therefore be
extended.

CONCLUSIONS
The linguistic comparison presented in this work con-

firms that the descriptions of robotic-assisted surgical
procedures are much more demanding to interpret: (i)
they use more verbs per sentence; (ii) they require expert
personnel to annotate dataset; (iii) they make use of terms
that are not covered by existing semantic banks.

This preliminary investigation suggests that, in order to
obtain suitable performance in mining textual descriptions
for surgical robotics, modifications to existing semantic
banks and the development of specialized processing
methods are required.

ACKNOWLEDGEMENTS
This work has received funding from the European

Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No. 742671 “ARS”).

REFERENCES
[1] J. Wang, H. Deng, B. Liu, A. Hu, J. Liang, L. Fan, X. Zheng,

T. Wang, and J. Lei, “Systematic evaluation of research progress
on natural language processing in medicine over the past 20 years:
Bibliometric study on pubmed,” J Med Internet Res, 2020.

[2] P. Shi and J. Lin, “Simple BERT models for relation extraction and
semantic role labeling,” CoRR, vol. abs/1904.05255, 2019.

[3] J. Mellia, M. Basta, Y. Toyoda, S. Othman, O. Elfanagely, M. Morris,
L. Torre-Healy, L. Ungar, and J. Fischer, “Natural language process-
ing in surgery: A systematic review and meta-analysis,” Ann Surg,
2021.

[4] M.-C. Fiazza and P. Fiorini, “Design for interpretability: Meeting
the certification challenge for surgical robots,” in 2021 IEEE Int.
Conf. on ISR, 2021.

[5] Z. Zhang, P. Webster, V. S. Uren, A. Varga, and F. Ciravegna,
“Automatically extracting procedural knowledge from instructional
texts using natural language processing,” in Proceedings of LREC
2012, Istanbul, Turkey, 2012.

[6] M. Bombieri, M. Rospocher, D. Dall’Alba, and P. Fiorini, “Auto-
matic detection of procedural knowledge in robotic-assisted surgical
texts,” Int. J. CARS, vol. 16, 04 2021.

[7] D. Jurafsky and J. H. Martin, Speech and language
processing: an introduction to natural language processing,
computational linguistics, and speech recognition, 2nd Edition,
ser. Prentice Hall series in artificial intelligence. Prentice
Hall, Pearson Education International, 2009. [Online]. Available:
https://www.worldcat.org/oclc/315913020

[8] M. Palmer, P. R. Kingsbury, and D. Gildea, “The proposition bank:
An annotated corpus of semantic roles,” Comput. Linguistics, 2005.

[9] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 NAACL-HLT Conference, Minneapolis,
MN, USA, 2019.

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 123



Deep learning-based localization of the biliary tract on white-light images
acquired during laparoscopic cholecystectomy

Cristina Iacono1, Sara Moccia2, Aldo Marzullo3,
Elena De Momi4, Fanny Ficuciello1, and Umberto Bracale1

1Department of Electrical Engineering and Information Technology, Università degli Studi di Napoli Federico II, Napoli, Italy
2The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy

3Department of Mathematics and Computer Science, Università della Calabria, Rende, Italy
4Department of Electrical Engineering and Information Technology, Università degli Studi di Napoli Federico II, Napoli, Italy

5Department of General Vascular and Thoracic Surgery, Università degli Studi di Napoli Federico II, Napoli, Italy

INTRODUCTION
Cholecystectomy is one of the most frequently per-

formed procedures in gastrointestinal surgery, and the
laparoscopic approach is the gold standard for symp-
tomatic cholecystolithiasis and acute cholecystitis. Since
the introduction of Laparoscopic cholecystectomy (LC),
surgeons have prioritized preventing complications.

Besides the advantages of a distinctly faster recovery
and better cosmetic results, the laparoscopic approach
bears a higher risk for bile duct injury with an incidence
in the range 0.3–1.5%. Bile duct injury has a significant
impact on quality of life and survival. Many measures have
been implemented to reduce the risk of bile duct injury
during laparoscopic cholecystectomy.

To avoid bile duct injury, intraoperative visualization of
the bile duct using near-infrared light and the fluorescent
dye indocyanine green (ICG) were introduced during
cholecystectomy [1]. ICG is metabolized by the liver
and excreted in bile, making it an excellent medium for
biliary imaging. The problem in using ICG is that, while
enhancing the bile duct, it makes it challenging to see all
the other anatomical structures, see Fig. 1.

This work aims to address this problem, helping the sur-
geon to identify the biliary tract without the use of ICG. To
this end, a deep-learning algorithm for the localization of
the biliary tract from white-light images acquired during
the surgical procedures has been implemented. This work
also includes the construction and annotation of an image
database to train the deep learning algorithm.

MATERIALS AND METHODS
The method directly uses laparoscopic images to local-

ize the biliary duct. To this end, You Only Look Once
(YOLO), a state-of-the-art convolutional neural network,
has been used [2]. YOLO is a regression-based object
detector that looks at the whole image once to perform the
detection. It consists of a single CNN that simultaneously
predicts bounding boxes and the class probabilities for
the boxes. In addition, YOLO looks at the entire image
to encode contextual information during prediction, and
thus, it is extremely fast and found suitable to detect or
localize objects in real-time.

Fig. 1: Intraoperative visualization of the bile duct using
indocyanine green (ICG).

With the support of expert clinicians, an image dataset
has been collected from 12 video clips of 12 patients who
underwent laparoscopic cholecystectomy. The videos col-
lected from patients that presented complications that did
not fall within the scope of this study were rejected. The
videos were acquired through a high-definition endoscopic
camera system with a 25 Hz frame rate during surgical
endoscopic procedures. The frames extracted from the
videos were sampled one every ten frames, obtaining
399 frames. The frames were then manually annotated by
drawing a bounding box on the bile duct.

The video frames were split to have 208 frames for the
training set and 191 frames for the test set, as illustrated in
Table I. The training set was used to train the neural net-
work, while the test set was used for evaluation purposes
only. The frames of three patients out of twelve (Patients
3, 6 and 12) have been used only in the test set.

The Intersection over Union (IoU) was used as evalua-
tion metrics: IoU compares the annotated bounding boxes
with the bounding boxes predicted by the network, as
follows:

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜 𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜 𝑓 𝑈𝑛𝑖𝑜𝑛
(1)

For the training phase the following parameters were
used:

• Batch size: 64,
• Learning rate: 0.001,
• Epochs number: 1748,
• Average loss: 0.18.
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TABLE I: Dataset composition

Total Frames Training Test
Patient 1 142 15 15
Patient 2 171 34 14
Patient 3 219 39
Patient 4 152 74 20
Patient 5 48 5 5
Patient 6 144 29
Patient 7 168 14 10
Patient 8 89 18 10
Patient 9 153 14 10
Patient 10 73 20 10
Patient 11 27 14 10
Patient 12 135 19

Total 208 191

I. RESULTS
To confirm the performance of the proposed method,

the network has been used on the test set. Table II shows
the results of the biliary duct detection on each patient.
Based on the experimental results, the overall IoU is 0.67.

TABLE II: Detection Results

IoU STD
Patient 1 0.65 0.04
Patient 2 0.70 0.07
Patient 3 0.53 0.02
Patient 4 0.63 0.11
Patient 5 0.73 0.02
Patient 6 0.65 0.04
Patient 7 0.80 0.01
Patient 8 0.63 0.08
Patient 9 0.76 0.02
Patient 10 0.84 0.02
Patient 11 0.65 0.02
Patient 12 0.58 0.04

Regarding the videos, which have frames in the training
set, the worst-case scenario happened for Patient 4 because
in the video, the biliary tract is not easily distinguishable
from the background. However, the localization of the
surgical site of interest is accurate enough to assist the
surgeon in identifying the biliary tract. Since each patient
can be very different from the others, a larger dataset is
needed to increase the robustness of the algorithm.

The frames of patients 3, 6 and 12 were used only in
the test set. The algorithm recognized the area of interest
in 26 of 29 images in video 6 and in 14 of 19 images
in video 12. The worst-case scenario happened in video 3
where only 6 of 39 images are correctly recognized.

CONCLUSIONS AND DISCUSSION
This work addresses the problem of biliary tract injury

during laparoscopic cholecystectomy, using an innovative
approach in relation to the work suggested by the litera-
ture. The method proposes the application of YOLO for
the localization of the biliary tract, creating a dataset of
annotated frames of the surgical scene. The average IoU
is equal to 67%, despite the small size of the dataset. The
future goal is to use the localization of the biliary tract

in real time and implement an augmented reality system,
in order to help the surgeon to correctly and more easily
recognize the area of interest in the crucial phases.

(a) Patient 3

(b) Patient 4

(c) Patient 6

(d) Patient 12

Fig. 2: Results of the localization algorithm on 4 different
patients. Patient 3 (a), 6 (c) and 12 (d) belong only on the
test set.
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INTRODUCTION
Over the past years, magnetic soft robots have drawn

considerable attention due to the wide range of potential
applications enabled through the controlled use of highly
compliant materials, miniaturization, and untethered con-
trol. From flexible soft catheters to micro-robots with a
wide range of locomotion capabilities [1], [2], the specific
use of magnetic responsive elastomers (MRE) has shown
varied possible applications to robotic surgery.

Soft robots rely on accurate material characterizations
to achieve precise modeling, actuation and control. Con-
siderable efforts have been made to mechanically charac-
terize frequently employed non-magnetic elastomers [3],
[4]. However, characterization of MRE is often restricted
to their microstructure, particle behavior or magnetorhe-
ological properties [5], failing to provide macro-level
properties of interest from a robotics point of view [6].
This often leads to robotic applications using properties
based either on the manufacturer’s data or models applied
to their non-magnetic counterparts [1].

To address this, we provide a material characterization
of MRE commonly employed in soft robots [1], [2], from
mechanical and magnetic perspectives. For mechanical
characterization we consider a tensile analysis of these
different MRE and the suitability of linear elastic and
commonly employed hyperelastic models to represent their
behavior. For magnetic characterization we present an
easily implemented, cost-effective method for determining
the magnetic moment of MRE samples, using a load cell;
studying the influence of particle concentration on the
resulting MRE magnetic moment. The results were then
applied to a soft magnetic continuum robot to demonstrate
the influence of robot-specific mechanical and magnetic
characterization on its simulation results.

MATERIALS AND METHODS
Two MRE were tested: Ecoflex™ 00-30 loaded with

NdFeB at 0, 50, 100 and 150wt%, and Dragon Skin™
10 at 0, 50 and 100wt%. Higher concentrations than
the ones mentioned prohibited curing and thus were not
considered in the study. The MRE were left to fully cure
at room temperature before demolding and magnetizing
in an impulse magnetizer, under either 2.7 and 5 T fields.

For the mechanical characterization, destructive uniax-
ial tensile testing, in accordance with ISO37:2017 was
performed. A linear elastic model at 100% strain was
fitted for all samples to retrieve the corresponding Young’s

Linear motor

Permanent magnet
Sample

Load cell

ample holder

Fig. 1: Setup for the magnetic characterization of MRE.

modulus. To understand the best modeling practices for
MRE, a linear elastic model, and hyperelastic models:
Mooney-Rivlin, Neo-Hookean, Ogden (three coefficients),
Polynomial (5 coefficients), and Yeoh were fitted to the
whole strain range of the obtained stress-strain curves.

To magnetically characterize the different MRE, sam-
ples were placed under an external magnetic field and field
gradient, and the generated forces and torques measured
(Figure 1). The presence of the linear motor allows the
collection of data at different distances from the permanent
magnet (PM). By measuring the forces 𝐹 (1) and torques
𝜏 (2) experienced by the samples under an external mag-
netic field 𝐵𝑒, their magnetization vector 𝑚, and magnetic
moment ma 3 can be determined.

𝐹 = (𝑚 · ∇)𝐵𝑒 (1)

𝜏 = 𝑚 × 𝐵𝑒 (2)

ma =
‖𝑚‖
𝑉

(3)

This method was first validated on small PMs, and then
used to examine the influence of particle concentration,
impulse magnetizing field intensity, and MRE stiffness on
the resulting MRE’s magnetization.

RESULTS
Table I lists the values of Young’s modulus at 100%

strain, as well as the mean absolute percentage errors
(MAPE) of the linear and hyperelastic models for the
whole strain range. For both MRE, an increase in concen-
tration of NdFeB microparticles led to a stiffening of the
composites. However, the rate of increase of the Young’s
modulus decreases as the concentration goes up. The
addition of NdFeB microparticles also translates to a loss
of hyperelasticity, which can be seen through the lower
fitting errors for the linear model as the concentration
increases in Table I. Nonetheless, hyperelastic models still
have lower fitting errors when compared linear models,
thus showing their applicability to MRE.
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TABLE I: Results of model fitting to MRE tensile test data: showing the values of Young’s modulus (E) for fitting up to 100%
strain, and the mean absolute percentage error (MAPE) for all fitted models.

Linear model Hyperelastic models
100% strain Full strain Neo-Hookean Mooney-Rivlin Yeoh Ogden Polynomial

Elastomer Con. (wt%) E [kPa] MAPE [%] MAPE [%] MAPE [%] MAPE [%] MAPE [%] MAPE [%] MAPE [%]

Ecoflex™ 00-30
0 42.7 ± 3.9 28.7 98.0 23.0 12.2 13.2 4.8 6.5

50 73.2 ± 10.2 22.9 66.8 17.2 19.7 14.9 7.1 5.0
100 102.1 ± 7.3 17.8 15.2 18.3 10.0 11.3 4.0 5.3
150 128.2 ± 4.6 24.6 21.6 14.5 16.2 13.6 6.5 4.9

Dragon Skin™ 10
0 201.1 ± 12.0 13.6 33.0 11.3 18.9 16.0 3.6 2.1

50 343.2 ± 9.1 10.0 9.7 20.6 13.2 9.4 3.4 1.6
100 360.1 ± 10.9 9.9 9.2 19.4 9.2 8.5 3.3 1.3
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Fig. 2: Effect of the magnetic particle content and magnetizing
field on the values of magnetization of MREs.

Figure 2 depicts the values of magnetization ma ob-
tained for the MRE samples. Higher magnetic content
results in a higher value of ma. However, this increase
is non-linear; reducing as the concentration increases. No
significant difference was found between Ecoflex™ 00-
30 and Dragon Skin™ 10 samples. This indicates that
these matrices do not affect the magnetic properties of the
final MRE when submitted to a single magnetizing field.
Lastly, different values of 𝐵𝑚 gave rise to different values
of ma, even though both 𝐵𝑚 were over the particles’ in-
trinsic coercivity. This verifies the limitation that impulse
magnetizing fields have in which the depth of penetration
depends on the sample’s shape and size, obeying the skin
effect [7].

The results achieved for the fully soft discrete magnetic
continuum robot are presented in Figure 3. The theoretical
model assumes constant Young’s modulus of 69 kPa for
the whole length of the robot and remanence of 107 mT, as
per the materials’ datasheet. The corrected model, on the
other hand, takes into account the difference in Young’s
modulus between magnetic and non-magnetic sections, as
well as a more accurate value of magnetic remanence,
lowering the MAPE error from 8.5% to 5.4%.

CONCLUSIONS AND DISCUSSION
In this paper, we presented a material characteriza-

tion for magnetic elastomers commonly employed in soft
robots that is able to reduce errors in their modeling and
simulation. Mechanical analysis showed that an increase
in concentration of NdFeB content translates into a loss of
hyperelasticity. Even so, hyperelastic models Ogden and
Polynomial are still more accurate than linear models.
Magnetic characterization showed that higher magnetic
content leads to higher magnetization non-linearly, slow-
ing down with concentration. These findings were subse-
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Fig. 3: Fully soft discrete magnetic continuum robot (magne-
tization shown by red arrows, applied uniform field by black
arrows). (a) no field, (b) actuation in an uniform magnetic field,
(c) corresponding simulation results considering theoretical and
our corrected model.

quently validated on a fully soft magnetic continuum robot
and reduced modeling errors on average by 37% when
compared to using theoretical parameters. This reduction
can be further increased by utilizing application strain
specific mechanical properties and models, testing how the
mechanical properties of the MRE changed when under
actuation, and the development of more repeatable and
accurate fabrication methods.

REFERENCES
[1] P. R. Lloyd, T. Da Veiga, A. Attanasio, N. Marahrens, J. H. Chandler,

P. Valdastri et al., “A learnt approach for the design of magnetically
actuated shape forming soft tentacle robots,” IEEE Robotics and
Automation Letters, 2020.

[2] Y. Kim, G. A. Parada, S. Liu, and X. Zhao, “Ferromagnetic soft
continuum robots,” Science Robotics, vol. 4, no. 33, p. eaax7329,
2019.

[3] C. Schumacher, E. Knoop, and M. Bacher, “Simulation-ready char-
acterization of soft robotic materials,” IEEE Robotics and Automa-
tion Letters, 2020.

[4] D. Steck, J. Qu, S. B. Kordmahale, D. Tscharnuter, A. Muliana,
and J. Kameoka, “Mechanical responses of ecoflex silicone rubber:
Compressible and incompressible behaviors,” Journal of Applied
Polymer Science, vol. 136, no. 5, p. 47025, 2019.

[5] G. Stepanov, D. Y. Borin, A. Bakhtiiarov, and P. Storozhenko,
“Negative coercivity of magnetic elastomers filled with magnetically
hard particles,” Journal of Magnetism and Magnetic Materials, vol.
498, p. 166125, 2020.

[6] N. Bira, P. Dhagat, and J. R. Davidson, “A review of
magnetic elastomers and their role in soft robotics,” Frontiers
in Robotics and AI, vol. 7, p. 146, 2020. [Online]. Available:
https://www.frontiersin.org/article/10.3389/frobt.2020.588391

[7] J. Stöhr and H. C. Siegmann, “Magnetism,” Solid-State Sciences.
Springer, Berlin, Heidelberg, vol. 5, 2006.

Proceedings of the 11th Joint Workshop on
New Technologies for Computer/Robot Assisted Surgery (CRAS 2022) 127



Dual-Arm Platform for Control of Magnetically Actuated Soft Robots

Michael Brockdorff, Giovanni Pittiglio, Tomas da Veiga, James Chandler, and Pietro Valdastri

STORM Lab UK, University of Leeds

INTRODUCTION
The present work discusses a novel approach for remote

magnetic actuation. In the following, we present a full
characterization of the dual External Permanent Magnet
(dEPM) actuation system. Herein, we discuss how this
system can be applied to fully control the magnetic field
in a predefined workspace. We discuss how it can generate
a homogeneous magnetic field, in every direction and
control every independent gradient in the same workspace.
We prove how up to 8 Degree of Freedom (DOF), 3
independent field components and 5 gradients directions,
can be controlled fully independently.

The rise in popularity of magnetic actuation comes
from the fact that it allows for reduction in size of
magnet agents, including wireless magnetic micro-robots
and magnetic Soft Continuum Robots (SCRs). SCRs have
a theoretical infinite number of DOFs and thus can adapt
to various nonlinear environments, minimising contact
and pressure on surrounding tissue. However, millimeter
scale magnetic actuation is characterized by several dif-
ficulties, related to generating uniform fields in a larger
workspace and requiring higher actuating wrench (forces
and torques), thus higher field strength. While successful
multi-DOFs magnetic actuation has been demonstrated at
small scale [1], by using systems of coils, large-scale
manipulation is yet to be fully proven. In fact, it might
require several independently-controlled coils [2] to be
effective along any possible direction of motion. Despite
their ability to generate both homogeneous fields [3] and
gradients [2], systems of coils are less scalable, compared
to permanent magnet-based magnetic field control systems
[3]. In fact, due to lower field density, energy-consumption
and need for high-performance cooling systems, they are
generally characterized by limited workspace [4].

By further developing the idea of remotely actuating 1
Internal Permanent Magnet (IPM) (internal since, gener-
ally, inside the human body) with 1 External Permanent
Magnet (EPM) [5], we discuss how 2 robotically actuated
EPMs are able to magnetically manipulate 2 IPMs, inde-
pendently. This is achieved by independently controlling
the torque (magnetic field) and the force (field gradients)
applied to each IPM.

MATERIALS AND METHODS
Magnetic manipulability is the measure of the number

of magnetic DOFs that can be magnetically manipulated
by a magnetic actuation system. This means that, given a
set of inputs, we aim to measure the number of variables
that can be independently actuated. In the following, we

prove that with 2 EPMs (M = 2) we can control 8
DOFs of 2 orthogonal IPMs (N = 2) in the same point
of the worskspace. Assuming that 2 IPMs are in the
same point within the workspace, they will experience
the same magnetic field (𝐵) and magnetic field jacobian
(𝑑𝐵 = 𝜕𝐵

𝜕𝑝 ). This will induce a magnetic wrench on the
IPMs consequent to its magnetization 𝑚𝑖 and location 𝑝𝑖
as shown in (1).

𝑤𝑖 =

(
03,3 𝑚𝑖+
𝑚𝑖× 03,5

) (
𝐵(𝑝)
𝑑𝐵(𝑝)

)
. (1)

𝑤𝑖 = 𝑆𝑖𝑈

Where 𝑤𝑖 =

(
𝜏𝑖
𝑓𝑖

)
and 𝜏𝑖 and 𝑓𝑖 and refer to the

respective torque and force on the agent 𝑖. Here we
introduce the operator ·+ : R3 → R3×5 which rearranges
any vector 𝑣 ∈ R3, as well as the operator ·× : R3 → R3×3

as 𝑣× = (𝑣 × 𝑒1 | 𝑣 × 𝑒2 | 𝑣 × 𝑒3). Where 𝑒 represents the
canonical basis of R3.

Finding the rank of 𝑆 allows us to determine the number
of controllable DOFs. It is known that for any agent 𝑖,
𝑟𝑎𝑛𝑘 (𝑆𝑖) = 5 [6]. Moreover, one can notice that maxi-
mum manipulability can be obtained when the 2 agents
are orthogonal. This comes from the fact that with this
configuration 𝑆 = (𝑆1

𝑇𝑆2
𝑇 )𝑇 and 𝑚1 × 𝑚2 ≠ 0. Resulting

in 𝑟𝑎𝑛𝑘 (𝑆) = 8, thus proving that with 𝑀 = 𝑁 = 2 we
can control 8 independent magnetic DOFs. Since 2 EPMs
are used, we refer to this actuating system as the dEPM
system.

Finding 8 independent DOFs is equivalent to finding 8
poses of the EPMs that lead to 8 orthogonal directions of

Fig. 1: Setup for magneto-mechanical actuation experi-
ments using the dEPM setup
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Fig. 2: Normalized response for magnetic field and differentials. Title colors are referred to the component activated
for each case.

the wrench onto the IPMs. Thus, obtaining 8 independent
𝑈 (𝑇), where 𝑇 = 1, 2, ..., 8. Due to the nonlinearities
associated with solving (1), we opted for a direct analysis
of primitive poses which show independent activation of
field and differential component. To achieve independent
field control we look for configurations where the magnets
are aligned. In contrast, to obtain independent components
of 𝑈 related to the differentials of the field, we consider
solutions with no field components. This is achieved by
positioning the EPMs in opposite directions.

RESULTS
Validation of the proposed inferences, was performed

through a series of experiments, aimed at proving the 8
DOFs manipulation capabilities. This was done by using
8 configurations of the EPMs for which we can control,
independently, the 8 components of the field 𝑈. Each
experiment was performed by placing 2 IPM coupled 6-
axis load cells (Nano17 Titanium, ATI, USA) between
2 robotic arms (LBR iiwa 14, KUKA, Germany); each
manipulating one of the actuating EPMs (Cylindrical
permanent magnet with a diameter and length of 101.6
mm and an axial magnetization of 970.1 𝐴𝑚2 (N52)), as
shown in Fig. 1. Two load cells where used, each with a
IPM attached to it, with IPMs orthogonal to each other.
By measuring the wrench induced by each unique pose of
the EPMs and inverting (1) by use of the Moore-Penrose
pseudoinverse, 𝑈 for each pose was measured. The nor-
malized results for each case (independent actuation of
each component of 𝑈) can be seen in Fig. 2.

CONCLUSIONS AND DISCUSSION
The present work discussed the manipulation capa-

bilities of robotically manipulated magnetic sources. In

particular, we showed that 2 actuated EPMs are able to
independently manipulate 8 DOFs. Both theoretical disser-
tation and experiments prove that the proposed approach
can achieve the same capabilities as coil based actuation
[6]. The findings can be used to potentially improve a vast
range of diagnostic and interventional medical procedures
through the employment of smaller and softer instruments.
For example, applying the dEPM system to actuate multi-
DOFs magnetic SCRs.
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INTRODUCTION

Soft continuum robots (SCR) are becoming increasingly
popular in the field of medical and surgical robotics
because of their ability to safely navigate tortuous path-
ways and access previously infeasible locations. These
robots are generally designed and fabricated using low
elasticity materials such as silicone polymers and can
be actuated in many different ways including pneumatic,
electrostatic, magnetic and chemical based methods [1].
Magnetic actuation is becoming common in the field of
surgical robotics due to its ability to penetrate most non-
metallic environments and because, at low strengths and
frequencies, it is considered safe for biomedical applica-
tions. Furthermore, magnetic actuation is remote, since it
relies on ferromagnetic bodies buried inside the actuating
robot, enabling huge miniaturization potential [2] [3] [4].

Magnetic actuation relies on externally generated mag-
netic fields. Applying a homogeneous magnetic field will
produce torque whereas applying a magnetic field exhibit-
ing a spatial gradient will also produce magnetic force.
When a magnet with magnetic moment (𝑚) is placed in
a homogeneous external magnetic field (𝐵) it will attempt
to rotate to align with the external field, producing a
magnetic torque (𝜏 = 𝑚 × 𝐵). When the angle between
the magnetization direction and the external magnetic
field is obtuse (>90°) the cross product increases as the
magnet rotates under this torque. This increasing torque
property can be beneficial in magnetic SCRs, producing
large manipulator deformation. It is however, also prone
to twisting about the torsional axis [5] as seen in Fig. 1.

Previous work has demonstrated the capabilities of fiber
reinforcement in non magnetic manipulators [6] [7]. Here
we have fabricated both unreinforced and fiber reinforced
SCRs with permanent magnet actuation to demonstrate
a significant reduction in unwanted twisting when heli-
cal fibers are present. Whilst we demonstrate significant
twist mitigation, this gain was limited by largely manual
manufacturing methods.

In this work we expand upon how we are developing
our manufacturing process to facilitate miniaturization and
improve design flexibility. This will enable us to further
reduce unwanted twist and apply reinforcement in far
smaller SCRs. With this process improvement we can
design SCRs capable of accessing tiny and sensitive areas
of the human anatomy. In particular, we are targeting an

Fig. 1: Impact of Fiber Reinforcement: Unreinforced and fiber
reinforced manipulator under stable actuation (top) with no twist
and pure bending. Un-reinforced and fiber reinforced manipula-
tor under unstable actuation (bottom) where twisting occurs in
both but is greatly reduced in the fiber reinforced prototype.

external diameter of 1 mm at an Elastic modulus of 100
kPa with the ambition to gain access to the pancreatic and
bile ducts.

MATERIALS AND METHODS
The fiber reinforcement shown in Fig 1 uses 400

`𝑚 diameter polylactic Acid (PLA) filament wound in
two separate helices, a clockwise helix inside a counter-
clockwise helix at an angle of 85◦. Two 3.2 mm x
3.2 mm cylindrical NdFeB permanent magnets provide
torques at the locations illustrated by the cyan arrows. This
arrangement is embedded in a SCR of diameter 6 mm and
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Fig. 2: A sample tentacle under actuation in the Helmholtz coil
and the two motion primitives being measured: Twist about the
local 𝑧 axis (𝜓) and Bend about the 𝑦 axis (\).

actuated in a one dimensional Helmholtz coil (DXHC10-
200, Dexing Magnet Tech. Co.) up to a maximum of 20mT
as shown in Fig. 2.

RESULTS
The tip of the unreinforced SCR, at worst, twisted by an

angle of 145◦. Under identical actuation conditions the tip
of the reinforced SCR twisted by 49◦. An improvement of
67% was observed in the unwanted primitive. As can be
observed in Fig 1, this reduced twist has a material effect
on the navigational capability of the SCR.

CONCLUSIONS AND DISCUSSION
The underlying purpose of this feasibility study is to

produce a magnetic manipulator which remains mechan-
ically stable under unstable magnetic actuation. This will
allow for large deformations in a millimetre scale soft
robot.

To achieve this, we are exploring a range of micro-
manufacturing options. We are looking at the production
of sub-millimeter scale fibrous braids to embed within
magnetic silicone. We are also exploring the helical print-
ing of material directly onto the doped silicone manipu-
lator body using a helix printing stage which can extrude
PLA filament down to a diameter of 50`𝑚 and wind this
into a left or right handed helix of any chosen diameter,
pitch and length.

Our ambition is to apply this technology to enter the
notoriously inaccessible pancreatic and bile ducts in a
safe and efficient manner. A phantom of this region of the
digestive tract is shown in Fig. 3 with centrelines extracted
in red. These are extremely soft (E ≈ 3kPa [?]) and
sensitive regions of the body with tight corners requiring
large manipulator deformation. At present less than 10%
of pancreatic cancer patients are able to receive therapeutic
or long-term treatment by surgery [8]. We believe that
this study will enable a significant next step on the route
towards safe, minimally invasive access for one of the most

Fig. 3: Proposed path: Centerline extraction of navigation path
from MRI scans of the duodenum, pancreatic and biliary ducts.

fragile and inaccessible regions of the anatomy, a region
currently with terrible oncological outcomes.
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INTRODUCTION
Endoscopic Endonasal Surgery (EES) targets the si-

nuses or base of the skull for treatment of lesions, tumors
or polyps. The endonasal approach for these procedures is
much safer than a craniotomy approach, involving remov-
ing part of the skull to access the operating site. Even
though current EES is highly beneficial, technological
limitations are still present [?]. EES is performed by in-
serting a rigid endoscope and accompanying tools through
the nostrils. The coupled constraints of narrow, curved
anatomy with straight and rigid tools present a significant
challenge in EES, limiting visibility and maneuverability
within the workspace. Enhancing the flexibility and con-
trollable Degrees of Freedom (DoF) of the tools used in
EES could make procedures safer and easier to perform,
and significantly improve surgical outcomes. Most of
the proposed robotic solutions for EES are mechanically
driven with sizes close to standard and do not address the
issue of miniaturisation or delicate tissue interaction [?],
[?]. The field of soft robotics may offer solutions to the is-
sues faced in EES, allowing small compliant manipulators
with increased DoF for superior maneuverability and safer
tissue interactions. Of these robotic designs, the relatively
new field of Soft Magnetic Manipulators (SMMs) presents
some notable advantages when designing for small scales.
SMMs can be entirely soft and can be magnetically pre-
programmed to produce desired deformations under ex-
posure to specific and controlled external magnetic fields
[?]. External, remote actuation of this type thus enables
extreme miniaturization without loss of controllable DoFs,
which is often impossible to achieve with other approaches
due to the accommodation of onboard actuation. Due
to these advantages magnetically actuated devices can
be very beneficial in medical environment – specifically
for improving navigation through torturous anatomical
pathways and difficult to access surgical sites, such as
in EESs. In this paper we investigate the application of
soft continuum magnetic manipulators to EES procedures.
In combination, the presented approach aims to enable
delicate interaction with tissue, and higher maneuverabil-
ity with respect to current EES tools; overcoming issues
associated with torsion.

MATERIALS AND METHODS
A. PRINCIPLE OF MAGNETIC ACTUATION

A magnetic agent with magnetization ` is subject to
magnetic force ( 𝑓 ) and torque (𝜏), under an applied field

Fig. 1: Experimental set up: a manipulator with optical
markers, robotic arms with External Permanent Magnets
(EPMs) and frame with optical markers.

𝐵, respectively as

𝑓 = ∇(` · 𝐵) (1)

𝜏 = ` × 𝐵. (2)

The magnetisation direction of a controlled body is
a crucial element when it comes to magnetic actuation
of soft structures. According to (2), when the magneti-
sation direction of the magnetic body aligns with the
applied external magnetic field direction, it is subject
to no resultant torque. If not aligned, magnetic torque
will tend to rotate the body; it can be expressed as
the cross product of magnetisation direction and applied
external magnetic field (2). Using this phenomenon, the
magnetic manipulator can be pre-programmed in a manner
to achieve desired deflection, when exposed to specific
external magnetic fields.

In cases where the angle between the magnetisation
vector and applied magnetic field is higher than 90°, SCRs
will commonly twist around the z axis of the manipulator,
rather than producing expected deflection. The concept of
constraining torsion in magnetic soft robots was explored
by [?], through the addition of helical fibres; succeeding
with torsion reduction of 67 %.

B. MANIPULATOR DESIGN AND FABRICATION
To address the issue of twisting, we consider a ma-

nipulator design with a monotlithic elastic double helix
reinforcement structure. Pursuing a geometrical solution
to the torsional effect maintains the benefits of fully
soft structure without a need for inclusion of stiff, hard
structures such as springs or fibres. Figure (2) shows the
design parameters in Y-Z and X-Z planes, related to the
double helix SCR design. This results in different stiffness
when bending about X and Y axes. Specifically, it results
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TYPE OD (mm) ID (mm) R h (mm) w (mm)
CYL 3.5 N/A N/A N/A N/A

SMM 1 3.5 1 30 0.5 1.25
SMM 2 3.5 1 12.5 1.5 1.25

TABLE I: Design parameters of SMMs including geomet-
rical variation of helical reinforcement.

in relatively low stiffness along X and high stiffness along
Y directions. This variability allows for minimal bending
in the Y direction and torsion around Z direction, while
keeping high deflection in the X direction.

Two designs of mechanical reinforcement with varied
geometrical parameters and a cylinder were considered as
defined in Table I. Basing on clinical needs for minia-
turisation, the outer diameter of the manipulators is set
to 3.5 mm. The core cylinder diameter and width of
the helices was held constant across designs (Table I).
All samples were fabricated by casting, with 3D printed
moulds (Grey V4 resin, Form III, Formlabs, USA). Equal
parts of Dragon Skin™ 30 (Smooth-On, Inc., U.S.A.)
A and B were mixed with 100 wt% of hard magnetic
micro-particles (Nd-FeB with an average 5 µm diameter
and intrinsic coercivity of Hci = 9.65 kOe, MQFP-B+,
Magnequench GmnH, Germany). The magnetic slurry
was then treated in a high vacuum-mixer (ARV- 310,
THINKYMIXER, Japan) for 90 seconds at a speed of
1400 rpm and pressure of 20.0 kPa. The degassed slurry
was injected in to the closed molds and cured at 45° for
30 minutes. To track samples during characterization in
the dual arm system, a 1 mm channel of 2 mm length
was added to the design to accommodate a frame with
optical markers. Each design was fabricated twice to be
magnetised in two directions for testing: along their X
and Y axes to allow comparison of stiffness variability
between the axes. (Fig. 2).

Fig. 2: Examples of monolithic reinforcement design,
where h is the thickness of the helical structure, c is a
core diameter, R is number of revolutions per unit length
and D is an overall diameter.

C. EXPERIMENTAL SET UP
Three candidate designs (Table I) magnetised in X and

Y directions were evaluated by recording data on ma-
nipulator deformation under varied conditions of external
magnetic fields applied by dual arm robotic system with
permanent magnets. The tip poses of manipulators are
recorded via an Optitrack system (https://optitrack.com/)
with optical markers attached to the manipulator during
testing. The bending information around X, Y and Z was
obtained from rotation of the rigid body.

RESULTS
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Fig. 3: Results of testing 3 candidate designs under dif-
ferent magnetic field conditions as a ratio of deflection to
torsion. Top: Samples magnetized in X direction; Bottom:
Samples magnetized in Y direction.

To find the optimal mechanical reinforcement geometry,
we consider a ratio of bending in the magnetized direction
to the maximum recorded torsion for all six samples
Fig. 3. In the Fig. 3(top), SMM2 shows a greater ratio
than a cylinder of the same diameter. In addition, the
ratio value for SMM1 is lower than the value for both,
cylinder and SMM2. In the Fig. 3(bottom), SMM1 shows
the lowest ratio of all three samples. However, analysing
both plots, it can be seen that only the design SMM2
shows desired behaviour in both magnetization cases. In
the case of magnetization along X, the optimal design is
expected to have the highest ratio and the lowest in case
of magnetization along Y.

CONCLUSIONS AND DISCUSSION
Results collected for three candidate designs showed

that the SMM2 design reduces torsion while keeping high
deflection in X direction and relatively low deflection
in Y direction. Therefore from samples tested in this
paper, SMM2 is an optimal design to be used as a soft
magnetic manipulator for EES. Future work will include
investigation on a greater range of designs, varying more
parameters of reinforcing geometry.
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INTRODUCTION 

Intraoperative ultrasound (US) in minimally invasive 

surgery allows surgeons to visualize subsurface 

structures and localize them as the surgery progresses.  

Typically, the US probe is gripped by one of the two 

active manipulators, reducing surgeon dexterity by 

limiting the available manipulators. To reduce cognitive 

load and allow the total usage of both manipulators, 

introducing autonomy to the scanning task may be 

implemented. 

Robotic-driven US allows scans to be used in the 3D 

reconstruction of underlying structures, such as blood 

vessels and tumors.  The contact force between the probe 

and specimen is one key factor in generating good quality 

scans. Contact force should be sufficient to maintain 

contact with the surface and to ensure quality acoustic 

coupling. As contact forces increase, the induced tissue 

deformation also increases. This is useful in certain cases, 

such as elastography, but limits the quality of structure 

localization, thereby decreasing scan accuracy [1]. 

In robotic surgery, ultrasound probes may be inserted as 

a separate entity and be held by the jaws of the 

manipulator. There are two main methods available to 

measure interaction forces: 1) integrate some form of 

force sensing to the tooltip, or 2) use the applied motor 

torques and the kinematic chain to infer the applied 

forces. The integration of force sensing to the tooltip is a 

heavily researched field [2], with researchers typically 

modifying existing instruments to allow for sensing. 

Other researchers have attempted to use motor demands 

and the kinematic chain to estimate tool interaction forces 

[3].   This method uses neural networks to identify the 

externally applied forces at the tooltip. While the 

approach is valid, mechanical resistances can cause 

variation in joint efforts, leading to errors in the tooltip 

forces.  

This work details the force control method for ensuring 

controlled contact forces for autonomous ultrasound 

scanning.  We deploy a simulated da Vinci Patient Side 

Manipulator (PSM) on a selection of different bodies.  

The simulation framework is modified to allow for 

contact forces to be estimated, and an example control 

system is evaluated. 

MATERIALS AND METHODS 

To simulate the PSM and testing bodies, we opted to use 

the Asynchronous Multi-Body Framework (AMBF) 

developed by Munawar et al. [4].  This allowed the usage 

of soft bodies in the testing phase.  One limitation of the 

framework is the lack of monitoring of the contact forces 

between objects. An estimation of the manipulator 

contact force was inferred from the joint interaction 

forces in the physics solver.  The engine calculates these 

forces and torques whenever a multi-body (in this case 

the robot) comes into contact with any other body.  We 

utilized this by replacing the wrist section of the tool with 

a spherical tip modelled on the tip radius of an 

intraoperative US probe, and connecting it to the body 

with a rigid joint in the physics engine.  The forces in this 

joint equated to the surface contact forces, as long as the 

tooltip mass was negligible.  

These recorded forces were validated within the 

simulation by changing the mass of the tooltip indentor, 

and correlating the resultant change in joint forces output 

from the physics engine.  The PSM was oriented so that 

the tool was perfectly vertical, and the mass of the 

modified tooltip was set to between 1 and 10g.  As mass 

Figure. 2.  PSM in the environment indenting a cloth sheet 

 

Figure. 1.  Control scheme for the simulated PSM 
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increased, the magnitude force on the joint due to 

simulated gravity proportionally increased from 0.0098 

to 0.098N. 

The control diagram for the hybrid force/motion 

controller is presented in Fig 1.  The forward and inverse 

kinematics of the modified PSM were determined to 

perform the Cartesian control and feedback. The contact 

force perpendicular to the surface was then modulated 

using a manually tuned PI controller. Three materials 

were tested in the model, each utilizing a different 

material method in the physics engine: a rigid cylinder, 

soft sponge, and soft cloth. To evaluate the control 

system, we devised two testing regimes: 1) a sinusoidal 

loading to ensure validity under varying force, and 2) a 

sliding motion to ensure validity in motion.  For the 

sinusoidal loading the adapted PSM indented each 

material between 1.5 and 2.5N, at four target frequencies: 

0.1, 0.5, 1.0 and 5.0 Hz.  To ensure that the deformation 

was utilizing multiple joints of the PSM, the tool shaft 

was oriented at 70 degrees to the plane of the object (Fig 

2).  The object was then indented vertically along the Z-

axis, maintaining the current position in X and Y.  In the 

sliding tests, the sample was first indented to 2.5N before 

sliding back and forth 10mm in each direction.  The 

indenter was set to maintain a 2.5N load at all times. 

RESULTS 

In the sinusoidal loading tests comparable accuracy was 

observed between the three bodies at each indentation 

frequency.  The system performs best at 0.1Hz, yielding 

a root mean squared (RMS) error of 0.06N. The 

controller performed similarly in the 0.5 and 1.0Hz tests, 

with 0.13 and 0.18N RMS error, respectively.  The 5 Hz 

test was notably worse than the others, with 0.38N RMS 

error. In sliding motion, the controller performed best on 

the rigid body, with 0.06N RMS error.  The performance 

on the softer bodies was slightly worse, with 0.10 and 

0.11 N RMS error in the sponge and cloth, respectively. 

Examples of the recorded forces are shown in Fig 3. 

CONCLUSION AND DISCUSSION 

The control system was evaluated, yielding less than 10% 

force error in the force applications under 1Hz, and less 

than 3% error in the constantly loaded sliding tests.  In 

the sliding tests, spikes were observed both when the 

movement began and at the change in direction.  This 

spike was deemed to be an artifact of the simulation 

environment.  As the indenter begins to move, the mesh 

tended to buckle slightly, causing a steep angle between 

the indentor and the mesh. As the motion is continued, 

the controller corrects for this unusually high force.  This 

is inherent to the physics simulation in the way that the 

soft body interactions are calculated, and therefore must 

be solved in the underlying code.  

While this work shows the initial steps toward the 

simulation of force control in the da Vinci, in the future 

we wish to extend the force measurement and control to 

the full kinematic chain of the PSM.  The adapted 

simulation framework will allow for us to apply the 

‘dummy’ joints to the surface of each grasper face, 

allowing for grasping forces to be recorded.  This will 

offer a full interaction with the grasped ultrasound probes 

used in surgery. 

The work carried out represents a valid starting point 

from which the more complex environments and 

conditions observed in surgery may be created.  The 

technique may also be used to generate large datasets 

from different surgical tasks, essential in the use of 

techniques such as reinforcement learning, a fundamental 

step in the provision of autonomy to robotic surgery. 
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Figure. 3.  a) Results of the sinusoidal loading: from the 

0.1 and 0.5Hz tests on the Rigid Body, Sponge, and Cloth; 

b) Results from the sliding test on the Rigid Body, Sponge, 

and Cloth.  
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INTRODUCTION 

While autonomous robotic ultrasound systems have been 

a subject of research for more than two decades, the 

majority of work has been performed with extracorporeal                  

ultrasound probes, employing precisely maneuverable 

serial actuators, with elaborate force sensing and the 

possibility of mapping out the scanning surface via 3D 

cameras [1]. Minimally invasive surgical (MIS) systems, 

on the contrary, are built compliantly, commonly with 

tendon driven instruments as their end-effectors, making 

both precise kinematics and force measurements 

inherently difficult [2]. Previous research has commonly 

omitted this issue by using ultrasound phantoms with 

planar surfaces [3], not resembling the curved surface 

geometries found inside the patient. While there has been 

research on force sensing [4] and 3D scene 

reconstruction, these may not be deployable under 

realistic surgical constraints due to their size or their 

disruption to the workflow. 

We, therefore, propose a more general method for purely 

vision-based assessment of the coupling quality over the 

width of the image, without the requirement of additional 

hardware, making it easily deployable in a minimally 

invasive setting and applicable to non-planar surfaces. To 

validate the robustness of the approach, we use the 

extracted coupling information to automatically improve 

the coupling of a robotically guided ultrasound probe and 

a curved surface (see Fig. 1). 

MATERIALS AND METHODS 

Due to the wave-nature of ultrasound, a poor coupling 

between the ultrasound probe and tissue in a location on 

the ultrasound sensor array will affect the whole image 

slice along the propagation direction of the ultrasound 

wave (depth of the image). Coupling estimation can thus 

be defined as a regression task with the goal of finding a 

curve that best describes the quality of coupling over the 

width of the image. Starting from this assumption we 

propose to further reduces this task by performing several 

binary classification tasks on overlapping image slices 

and combine these into a coarsely sampled representation 

of the original regression task. We believe this to be 

advantageous for two reasons: Firstly, this approach 

vastly reduces the input size to be processed by the 

algorithm. Secondly, it increases the number of available 

data samples for training and evaluation, since each 

labeled ultrasound image divided up into a multitude of 

data samples. Making the slices overlap may further 

increase robustness of the system due to the inclusion of 

 

 
Figure 1: Coupling quality estimation between ultrasound 

probe and tissue surface with subsequent adaption of the 

ultrasound probe from poor coupling (left) to good coupling 

(right) 

partly redundant visual information. For the proposed 

approach, we split the original images (979 pixels wide 

and between 500 and 1126 pixels deep) into 32 slices, 

which we found to be a good compromise between 

resolution and performance. For the classification task, 

we designed a convolutional neural network (CNN) with 

four convolutional layers of depth 32, 32, 64 and 64 

respectively, followed by two dense layers (see Fig. 2). 

Between each of the convolutional layers we apply a 

leaky ReLu activation (𝛼 = 0.05) function followed by 

anisotropic max pooling (4 in depth and 2 in width 

dimension). The latter accounts for the large pixel ratio 

between depth and width of the extracted slices. 

Following the convolutional layers, we process the 

flattened output through two dense layers with an in-

between ReLu activation function and dropout of 0.5. 

The final classification result is generated via applying a 

softmax activation to the output of the last dense layer. 

While for training we employ these binary values as 

ground truth, we transition to using the resulting floating 

point numbers (between 0.0 and 1.0) during our 

prediction. This allows for simplified data labelling, 

while taking advantage of image slices where the 

classifier is less certain about its predictions.  

For the case of automated probe adaption we further 

propose the center-of-mass (CoM) equivalent of the 

classified coupling quality as 𝑐𝐶𝑜𝑀 =  
∑ (𝑐𝑖𝑑𝑖)𝑛

𝑖=0

∑ 𝑑𝑖
𝑛
𝑖=0

, with 𝑛 

being the number of slices in the image, 𝑐𝑖 the coupling 

quality of slice 𝑖 and 𝑑𝑖 the distance of the center of the 
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Figure 2: Structure of the proposed Deep Neural Network 

 

of the image, to reduce the information down to a single 

parameter. The parameter𝑐𝐶𝑜𝑀  therefore represents the 

relative imbalance of the coupling across the image. To 

test our proposed approach, we apply it to the adaption of 

an ultrasound probe (Philips L15-7io probe driven by 

iU22 ultrasound machine by Philips, Amsterdam, NL) 

that is held by a Da Vinci Surgical Robot (see Fig. 1) and 

automatically controlled via the Da Vinci Research Kit 

(DVRK) [5]. We start out by placing the probe in a 

partially decoupled state, equivalent to the image and 

robot configuration shown in Fig. 1 (left). Subsequently, 

we apply our algorithm to calculate 𝑐𝐶𝑜𝑀  and use the 

parameter value to adapt the probe angle towards the 

tissue surface by rotating around the image normal until 

the coupling balance approaches the center of the image 

(equal coupling on both sides – see Fig. 1 right). 

Rotations are performed in an incremental manner, 

adding the same small angle increment until full coupling 

is established.  

RESULTS 

We trained the neural network on a total of 6634 image 

slices with 40% of samples labeled poorly coupled and 

60% well coupled. All samples were acquired on a 

BLUEPHANTOM Branched 2 Vessel Ultrasound 

Training Block Model (CAE Healthcare, Saint-Laurent, 

CA). We applied a 85%/15% split into training and 

testing data, respectively. The final mean accuracy on the 

test data after 250 epochs was 0.98. 

Fig. 3 shows the evolution of probe rotation around the 

image normal axis, for 20 different runs of different 

positions and initial rotations on the curved phantom 

surface (see Fig. 1). For the plot we assumed the final 

rotations (fully coupled), to be an offset angle of zero, 

hence all lines approach the x axis. Initial angle offsets 

ranged between 5 and 15 degrees and were adapted 

between 2s and 4.5s. All twenty runs resulted in 

successful adaptions of the probe angle with fully 

coupling established. The resulting angle evolution over 

time, appears linear, as expected from the successive 

addition of angular increments. 

CONCLUSION AND DISCUSSION 

The presented approach for ultrasound coupling 

estimation showed to be capable of accurately detecting 

and quantifying the degree of decoupling in ultrasound 

images. By condensing the resulting information into a 

single parameter, we further showed how the approach 

can be directly translated into the probe angle adaption 

 
 

of a robotic ultrasound probe on the da Vinci 

Research Kit. Current shortcoming of this approach is the 

possibility of fully decoupling of the probe, for which 

further parameters (e.g. mean over all classified slices) 

might need to be included for adapting the probe angle. 

This however, poses the question of preventing the 

application of excessive normal forces onto the tissue. 

Future work fill focus on employing the algorithm as part 

of task of automated navigation. To increase reliability 

and prevent the probe from applying excessive pressures 

on the tissue, we are further looking into the possibility 

of using algorithmically estimated normal forces from 

the da Vinci’s motor torques. 

 

 

Figure 3: Evolution of ultrasound probe rotation around the 

image normal axis over time (zero degrees corresponding to 

good probe tissue coupling). 
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INTRODUCTION 

Robotic assisted minimally invasive surgery (RAMIS) 

presents several benefits for patients compared to open 

surgery, such as reduced trauma to the anatomical 

structures, shorter recovery time, and reduced blood loss. 

However, it could become a burden to the surgeon’s 

cognitive load. Thus, some frequently recurring surgical 

tasks such as tissue retraction were studies to improve the 

autonomous of surgical robot. [1] Perception is regarded 

as one of the biggest challenges in the high-level 

autonomy [2]. In endoscopy-guided RAMIS, extracting 

useful information from the endoscopic video for robotic 

motion planning is the common way to increase the 

autonomy. In the task of tissue retraction, tissue flaps 

obstructing the surgical field should be detected from the 

video. Many detection algorithms of automating tasks 

have been studies. Concerning the use of deep learning 

algorithms in the context of surgical data, the U-Net 

neural network has been developed for segmentation of 

biomedical images[3]. Spatio-temporal feature analysis 

has been introduced in U-Net [4].  Generative models have 

been used to augment the data for tissue detection [5]. 

Semi-supervised learning has been studied in surgical 

image segmentation [6]. Detection of tissue flaps has not 

been well-studied, and in the paper, U-net will be applied 

for the automation of retraction. 

MATERIALS AND METHODS 

The U-Net network is characterised by 4 encoder and 

decoder blocks. Each block of the contracting path is 

structured as follow. The input, in the first place, passes 

through a 5 × 5  convolutional Long Short-Term 

Memory (LSTM) layer, then two 5 × 5  Convolutional 

2D are applied, each one followed by a batch 

normalization and a leaky rectified linear unit (ReLU) 

layers. The down-sampling is implemented through a 

MaxPooling 2D layer, after the two convolutions. At 

each down-sampling step, the number of feature channels 

increases, thus raising from 64 to 256. Every step in the 

expansive path consists of an up-sampling of the feature 

map by means of a bilinear interpolation followed by a 

series of two 5 × 5 convolution that halves the number of 

feature channels. As in the encoding part, each 

convolution is followed by a batch normalization and a 

leaky ReLU layers. The two branches are connected at 

the bottom by a convolutional 2D layer, with kernel 

filters dimension𝑓𝑘 =  512. The skip connections consist 

in a concatenation of the upsampled feature map with the 

correspondingly one from the contracting path, after 

passing through the attention gate. At the final layer a 1 ×

1 convolution is used to map each 64-component feature 

vector to the desired number of classes and the sigmoid 

layer assigns to each pixel the probability of belonging to 

the foreground or background. In total the network has 

17 convolutional layers. 

 
Figure. 1. Adopted neural network architecture. The input is 

the DM, and the output is the segmented DM. 

The resolution required to identify flaps is lower than the 

original RGB images produced by the endoscope. 

Moreover, high resolution images would unnecessarily 

increase the time required to train the U-Net. 

Consequently, size of input and target images are reduced 

from 506 × 466  to 64 × 64 , thus allowing for faster 

training. The network is trained for 200 epochs with a 

learning rate of 0.001 and a batch size of 30 images. The 

Dice loss function [7] is adopted to compute accuracy and 

the Adam optimizer [8] is used to update the neurons’ 

weights at every epoch. 

In order to create the training dataset, surgical procedures 

were performed on cadavers with a clinical da Vinci Xi. 

Each pair of stereo images, collected with the binocular 

endoscopic camera, was processed in order to obtain the 

correspondent Depth map (DM), an image that maps the 

distance of objects from a viewpoint. The augmented 

dataset is split into a training set (90%) and a test set 

(10%) randomly. In order to assess the robustness of the 

U-Net against data variability, a training approach based 

on K-fold [9] cross-validation is adopted. The training 

process is repeated 𝐾 =  10  times using different 

subsets of the dataset as training and validation sets. 

RESULTS 

In order to determine the best performing model, 

comparison between three different neural network 

configurations were carried out:  
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 • UNet containing the Convolutional LSTM layer in the 

encoding part (ConvULSTMEnc) 

• UNet having a Convolutional LSTM layer both in 

encoding and decoding branches (ConvULSTM) 

• Unet containing Convolutional LSTM layer in the 

contracting path and the attention gate block 

(ConvULSTMAttn). 

The results are shown in the Table 1: 

Table.1. Mean and standard deviation comparison between the 

three different configurations. 

 
 

To evaluate the real-time performance of the model, a 

silicone phantom representing a colon is extracted from 

a training platform for colonoscopy (Kyoto Kagaku 

M40) of da Vinci Research Kit (dVRK). A section of the 

phantom is superposed to a background image, 

representing the surgical scene, aiming to simulate the 

presence of a tissue flap obstructing the surgical view.  

 

  

Figure. 2. (a) Phantom experiment setup. (b) Stereo image 

The DMs, obtained from the endoscopic stereo images, 

are fed to the neural networks that outputs the predictions 

with 2 Hz. For the tissue retraction application, it is an 

acceptable inference time, since the surgical movements 

are slow and do not require a fast update. 

CONCLUSION AND DISCUSSION 

 

ConvULSTMAttn is considered the model with highest 

performances. An important step to increase the 

performances of the model has been the dropout tuning. 

Several attempts have been performed, modifying the 

values in the range (0, 0.5). The observed results, as 

shown in Figure 3, displays better performances for low 

dropout values. In particular the black line (dropout 

equals 0, recurrent dropout equals 0) shows better results. 

Thus, the dropout values in the ConvULSTMAttn have 

been set to 0 for both the recurrent and convolutional 

layer. On the contrary, the same tuning approach, applied 

to the ConvULSTMEnc, led to different results, setting 

both values to 0.3. Since the main difference between the 

two architectures are the attention gate blocks, it is very 

likely that, by setting random pixels to 0, the attention 

gate performances degrade as well. 

 
Figure 3: The values of dropout parameters have been tuned in 

the (0, 0.5) range. Accuracy and Precision means have been 

considered to evaluate the effects. 

The modified U-Net model’s performances were 

significantly improved if compared to the standard U-Net 

model, trained on the same dataset artificially augmented 

by means of tools superposition. Hence, the inclusion of 

temporal layers to exploit temporal properties and of 

attention mechanisms to refine the predictions, prove to 

be fundamental to improve the results. 

This study is part of the research area focusing on 

partially automatizing surgical procedures. In the future, 

we will provide an autonomous approach for the tissue 

retraction task using the dVRK. 
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INTRODUCTION
The main purpose of this work is to develop a method-

ology and propose an approach to improve the control
of human-robot collaboration for robotic dental implant
placement. In this study, a human-robotic implant system
(HRIS) is designed according to the hand-guiding control
in a human-robot collaboration that can increase efficiently
the accurate and stable osteotomy drilling based on the
surgeon’s decision and robotic manipulators motion during
the implant placement. The proposed method is able
to modify the surgeon’s position and orientation hand
according to the posture of the desired placement. The
implant placement is always tracked by the camera and
the data of the desired position are sent to the controller of
the robot. The proposed HRIS system can also be enabled
or disabled during the drilling according to the decision
of the surgeon for increasing the safety performance of
the system.

Fig. 1: The proposed structure for the hand-robot collab-
oration system

MATERIALS AND METHODS
To control and modify the surgeon’s hand, the virtual

fixture method is used as the main control approach. In
fact, the virtual fixture is a software constraint method
and it provides a balance between direct human control
and autonomy. In this method, the stiffness of the both
position and orientation of the robot is adapted according
to the dental implant placement. The main idea of the
presented approach is that whenever the surgeon deviates
from the desired path, the robot will try to revise the
motion of the surgeon’s hand by increasing stiffness and
making a constraint in order to return the surgeon’s hand to
its desired path. Additionally, using a camera and different
defined tags the position and orientation of the implant
placed always be available and sent to the controller of
the system. The calibration of the position and orientation

of the desired implant placement is another challenge that
should be considered. The calibration should be performed
in the best mode in such a way that if the patient is
moving during the surgical operation, the new and correct
posture of the patient should be updated. In order to
interact properly between robot and surgeon, the software
of the robot controller is developed in a way that the
surgeon can observe the position and orientation of the
drilling tool during the surgical operation. In addition, the
surgeon is able to choose different views from the drilling
tool. To improve the safety performance of the system,
there are some different gauges and alarm systems that
are considered to warn the user as soon as the surgeon’s
hand has deviated from the desired path.
The structure of the find desired placement for the dental
implant can be observed in the Fig.2. Accordingly, using
a prob the points on the tooth’s surface are collected, and
then these points are registered with CT image shown in
Fig. 3. To have real-time navigation, in this study a Micron
Tracker camera is used.

Fig. 2: Structure of identifying the best placement for
dental implant

Fig. 3: CT Image of the Dental Implant Placement
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CONCLUSIONS AND DISCUSSION
To verify the performance of the introduced method,

the KUKA MED robot is used to perform the dental
implant placement using the presented approach on a
phantom head with a 3D jaw bone model. Additionally,
the results between free-hand drilling and HRIS controlled
drilling according to the apical center and head center
of the implant placement are compared to evaluate the
performance of the introduced method. Additionally, all
of the required data can be logged during the surgical
operation, and using this way the performance of the
surgeon can be evaluated by the system and shown with
the different graphs. The main structure of the introduced
HRIS is presented in Fig.1. According to this structure,
the camera tracks the dental placement as the desired
point and provided this information for the robot, and
then the robot controller is responsible to adapt the
stiffness of the robot according to the virtual fixture
method. The position of the drilling tool is measured
by the robot using the kinematic model of the robot
manipulator.
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INTRODUCTION
The limited number of Degrees of freedom (DoFs) of
robotic surgical end-effectors is an open issue for robot-
assisted laparoscopic surgery. The da Vinci surgical sys-
tem (Intuitive Surgical Inc., US) is a widely used robot
for surgical procedures, and its Patient Side Manipulator
(PSM) includes end-effector (EE), the EndoWrist surgical
tool, can be controlled by the surgeon only using 8 DoFs,
5 DoF for the PSM and 3 DoF for an EE. Advanced and
novel surgical instruments introduce modifications of the
mechanical structure, offering new DoFs and/or compli-
ance in the surgical system. The MUSHA (MUltifunc-
tional Smart HAnds) Hand II, presented in [1], is a three-
fingers miniature hand with force sensors for manipulation
and palpation of organs in laparoscopic surgery (Fig. 1).
The hand is composed of an actuation unit, three fingers,
and a �12 mm tube connecting them in between. The
actuation unit of the hand was designed based on the
original da Vinci actuation, with two additional motors to
actuate finger segments movements. The hand is highly-
underactuated, with 37 joints are driven by only six
Degrees-of-Actuation (DoA), and underactuated design
and integrated elastic elements enable adaptive prehensile
grasp. Its kinematic allows to realize several type of
grasp and complete various surgical task as retraction and
palpation. This paper proposes a mathematical modeling
policy suitable for under-actuated miniaturized surgical
tools. Given the under-actuation mechanical system, the
paper evaluates the reduced mathematical model based on
DoAs of tendon-driven hand start using as a case of study
the MUSHA Hand II.

REDUCED MODEL EVALUATION
The MUSHA Hand II has three identical fingers, the
index (I), the middle (M), and the thumb (T), each of
them includes 12 segments and is connected with 1-DoF
wrist. The first six segments of a finger compose the
proximal interphalangeal segment (PIP), while the other
six compose the distal interphalangeal segment (DIP). The
third joint of each finger divides the PIP segments into
two parts (PIP1 and PIP2), as shown in Fig. 2 [2]. The
actuation of joints of MUSHA Hand II is powered by
four motors of da Vinci robot and two additional motors
presented at the base of the tool trocar, the action of
motors is transmitted by elastic tendons that are firmly

Fig. 1: MUSHA Hand II could be mounted on the PSM of
the da Vinci system; in grasper mode; in fan retractor mode; in
palpation mode.
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Fig. 2: Details of kinematic structure with completely extended
finger and the reduced structure chosen according with the
actuation system.

connected with 5 links and at the base of the wrist. Starting
from this structure, it is possible to define a reduced
kinematic model where the relationship between joints and
the tip position 𝑝𝑟 ,𝜌 = (𝑥𝑟 ,𝜌, 𝑦𝑟 ,𝜌, 𝑧𝑟 ,𝜌) of finger 𝜌:

𝑥𝑟 ,𝜌 = cos(𝑞1,𝜌) (𝑎2 cos(𝑞2,𝜌) + 𝑎3 cos(𝑞2,𝜌 + 𝑞3,𝜌))
𝑦𝑟 ,𝜌 = sin(𝑞1,𝜌) (𝑎2 cos(𝑞2,𝜌) + 𝑎3 cos(𝑞2,𝜌 + 𝑞3,𝜌))
𝑧𝑟 ,𝜌 = 𝑎2 sin(𝑞2,𝜌) + 𝑎3 sin(𝑞2,𝜌 + 𝑞3,𝜌)
∀𝜌 ∈ {𝑇, 𝐼, 𝑀}.

(1)

where 𝑞𝑖,𝜌 is the value of i-th joint of the 𝜌-th finger,
and 𝑎𝑖 is the length of the i-th link. A peculiarity of the
MUSHA Hand II is that the configuration of joints and
the antagonist action of tendons in PIP1 and PIP2 allow
separating the position and orientation of the end of DIP
and PIP segments, so 𝑞3,𝜌 and 𝑞2,𝜌 are decoupled and
thus they can be independently controlled. It follows that
the model can be rewritten as:

𝑥𝑟 ,𝜌 = cos(𝑞1,𝜌) (𝑎2 cos(𝑞2,𝜌) + 𝑎3 cos(𝑞3,𝜌))
𝑦𝑟 ,𝜌 = sin(𝑞1,𝜌) (𝑎2 cos(𝑞2,𝜌) + 𝑎3 cos(𝑞3,𝜌))
𝑧𝑟 ,𝜌 = 𝑎2 sin(𝑞2,𝜌) + 𝑎3 sin(𝑞3,𝜌)
∀𝜌 ∈ {𝑇, 𝐼, 𝑀}.

(2)
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Fig. 3: Details of a bended MUSHA Hand II finger.

The complete kinematic model of the MUSHA Hand II,
𝑝𝑟 = 𝐾 (·), is obtained exploiting the equation (2) for each
finger, giving the following relationship:

𝑝𝑟 = 𝐾 (𝑞1,𝑇 , 𝑞2,𝑇 , 𝑞3,𝑇 , 𝑞1,𝐼 , 𝑞2,𝐼 , 𝑞3,𝐼 , 𝑞1,𝑀 , 𝑞2,𝑀 , 𝑞3,𝑀 ).
By adding the remaining sub-actuation constraint of fixed
symmetrically y-arranging of a finger around the wrist,
the following result is obtained:{

𝑞1,𝐼 = 𝑞1,𝑇 + 2𝜋
3

𝑞1,𝑀 = 𝑞1,𝑇 + 4𝜋
3

(3)

Moreover, by adding the mechanical constraint, which
implies that the proximal segments of the index and
middle fingers are actuated by the same tendon: 𝑞2,𝑀 =
𝑞2,𝐼 . Therefore, the kinematic relationship between tip
Cartesian positions of fingers and joint angles is equal
to:

𝑝𝑟 = 𝐾 (𝑞𝑊 , 𝑞2,𝑇 , 𝑞3,𝑇 , 𝑞𝑃𝐼𝑃 , 𝑞3,𝐼 , 𝑞3,𝑀 ). (4)

where 𝑝𝑟 is a vector containing fingertips position ex-
pressed in Cartesian coordinate 𝑞𝑊 = 𝑞1,𝑇 , and 𝑞𝑃𝐼𝑃 =
𝑞2,𝐼 = 𝑞2,𝑀 . During coupling motion of phalanx seg-
ments, the tendons cause links shrinkage modifying the
length of equivalent links. The strict requirement on pre-
cision in surgery tasks makes not negligible the variation
of link length in reduced mode. Then, a dependency of
links parameters is introduced, 𝑎𝑖,𝜌 ∀𝑖 ∈ {2, 3} and ∀𝜌 ∈
{𝑇, 𝐼, 𝑀} with joint angles. This paper exploits this de-
pendency using the chords theorem (Fig. 3), evaluating
the length of the links equal to:

𝑎𝑖,𝜌 = 2𝑟𝑖,𝜌 sin( 𝛽𝑖2 ). (5)

Let 𝑞𝑖 𝑗 ,𝜌 be the joint 𝑗 in phalanx 𝑖 of finger 𝜌, ∀𝑖 ∈
{2, 3} and ∀𝜌 ∈ {𝑇, 𝐼, 𝑀}. Consequently it is possible to
write the length of the chord in kinematic model and the
length of the link in actuated model as follows:

𝑎𝑖,𝜌 =



( 2𝐿𝑖,𝜌∑6

𝑗=2 𝑞𝑖 𝑗 ,𝜌+
∑5

𝑗=1 𝑞𝑖 𝑗 ,𝜌
) sin(

∑6
𝑗=2 𝑞𝑖 𝑗 ,𝜌+

∑5
𝑗=1 𝑞𝑖 𝑗 ,𝜌

2 )

𝐿𝑖,𝜌 if 𝑞𝑖,𝜌 = 0,

(6)

where 𝐿𝑖 , 𝜌 is the length of the arc of the i-th phalanx of
the finger 𝜌. Assuming that the action of tendons is equal
on all the segments, the angular displacements are equal

Fig. 4: Path comparison of full and reduced phalanx models .

to a fraction of the equivalent joint in the reduced model:

𝑞𝑖 𝑗 ,𝜌 =
𝑞𝑖,𝜌

6
∀ 𝑗 ∈ [1, 6], ∀𝑖 ∈ {2, 3} and ∀𝜌 ∈ {𝑇, 𝐼, 𝑀}.

Therefore, the explicit full hand model has 14 equations,
9 of which linearly independent, in 6 variables, as a result
of repetition of the single finger model:

𝑥𝑟 ,𝜌 = cos(𝑞1,𝜌) (𝑎2,𝜌 cos(𝑞2,𝜌) + 𝑎3,𝜌 cos(𝑞3,𝜌))
𝑦𝑟 ,𝜌 = sin(𝑞1,𝜌) (𝑎2,𝜌 cos(𝑞2,𝜌) + 𝑎3,𝜌 cos(𝑞3,𝜌))
𝑧𝑟 ,𝜌 = 𝑎2,𝜌 sin(𝑞2,𝜌) + 𝑎3,𝜌 sin(𝑞3,𝜌)

𝑎2,𝜌 =

{
( 6𝐿2,𝜌

5𝑞2,𝜌
) sin( 5𝑞2,𝜌

6 )
𝐿2,𝜌 if 𝑞2,𝜌 = 0

𝑎3,𝜌 =

{
( 6𝐿3,𝜌

5𝑞3,𝜌
) sin( 5𝑞3,𝜌

6 )
𝐿3,𝜌 if 𝑞3,𝜌 = 0

(7)

The reduced model of a finger is tested, comparing the
trajectory of the tip during a complete flexion with the
trajectory completed using the full kinematic model of
the finger. The results are shown in Fig. 4 and the error
introduced by the reduction of the model is equal to
16.04 ± 0.09% on x- and y-axises and 14.02 ± 0.04% on
the z-axis.

CONCLUSIONS
This paper proposes a mathematical modeling policy
for under-actuated miniaturized grippers with the aim to
reduce the mapping mathematical complexity of planned
trajectory from kinematic model in actuation system.
The method was applied to a novel surgical tool called
MUSHA Hand II and evaluated in preliminary tests,
showing its effectiveness. It is worth mentioning that the
positioning error introduced by the reduction of the model
to the actuation system alone can be neglected for small
movements and, being constant in percentage points, it
can be compensated for in closed-loop control.
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